Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.
Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform’s relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.
Malaria, caused by Plasmodium parasites, still contributes to a high global burden of disease, mainly in children under 5 years of age. Chronic and recurrent Plasmodium infections affect the development of B cell memory against the parasite and promote the accumulation of atypical memory B cells (atMBCs), which have an unclear function in the immune response.
Background Chronic and frequently recurring infectious diseases, such as malaria, are associated with expanded populations of atypical memory B cells (MBCs). These cells are different from classical MBCs by the lack of surface markers CD21 and CD27 and increased expression of inhibitory receptors, such as FcRL5. While the phenotype and conditions leading to neogenesis of atypical MBCs in malaria-experienced individuals have been studied extensively, the origin of these cells remains equivocal. Functional similarities between FcRL5+ atypical MBCs and FcRL5+ classical MBCs have been reported, suggesting that these cells may be developmentally related. Methods Here, a longitudinal analysis of FcRL5 expression in various B cell subsets was performed in two children from a high transmission region in Uganda over a 6-month period in which both children experienced a malaria episode. Using B-cell receptor (BCR)-sequencing to track clonally related cells, the connections between IgM+ and IgG+ atypical MBCs and other B cell subsets were studied. Results The highest expression of FcRL5 was found among IgG+ atypical MBCs, but FcRL5+ cells were present in all MBC subsets. Following malaria, FcRL5 expression increased in all IgM+ MBC subsets analysed here: classical, activated, and atypical MBCs, while results for IgG+ MBC subsets were inconclusive. IgM+ atypical MBCs showed few connections with other B cell subsets, higher turnover than IgG+ atypical MBCs, and were predominantly derived from naïve B cells and FcRL5− IgM+ classical MBCs. In contrast, IgG+ atypical MBCs were clonally expanded and connected with classical MBCs. IgG+ atypical MBCs present after a malaria episode mainly originated from FcRL5+ IgG+ classical MBCs. Conclusions Collectively, these results suggest fundamental differences between unswitched and class-switched B cell populations and provide clues about the primary developmental pathways of atypical MBCs in malaria-experienced individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.