Finite‐difference solutions to the wave equation are pervasive in the modeling of seismic wave propagation (Kelly and Marfurt, 1990) and in seismic imaging (Bording and Lines, 1997). That is, they are useful for the forward problem (modeling) and the inverse problem (migration). In computational solutions to the wave equation, it is necessary to be aware of conditions for numerical stability. In this short note, we examine a convenient recipe for insuring stability in our finite‐difference solutions to the wave equation. The stability analysis for finite‐difference solutions of partial differential equations is handled using a method originally developed by Von Neumann and described by Press et al. (1986, p. 827–830).
We have reformulated the law governing the refraction of rays at a planar interface separating two anisotropic media in terms of slowness surfaces. Equations connecting ray directions and phase‐slowness angles are derived using geometrical properties of the gradient operator in slowness space. A numerical example shows that, even in weakly anisotropic media, the ray trajectory governed by the anisotropic Snell’s law is significantly different from that obtained using the isotropic form. This could have important implications for such considerations as imaging (e.g., migration) and lithology analysis (e.g., amplitude variation with offset). Expressions are shown specifically for compressional (qP) waves but they can easily be extended to SH waves by equating the anisotropic parameters (i.e., ε = δ ⇒ γ) and to qSV and converted waves by similar means. The analytic expressions presented are more complicated than the standard form of Snell’s law. To facilitate practical application, we include our Mathematica code.
Many geological structures of interest are known to exhibit fracturing. Fracturing directly affects seismic wave propagation because, depending on its scale, fracturing may give rise to scattering and/or anisotropy. A fracture may be described mathematically as an interface in nonwelded contact (i.e., as a displacement discontinuity). This poses a difficulty for finite‐difference modeling of seismic wave propagation in fractured media, because the standard heterogeneous approach assumes welded contact. In the past, this difficulty has been circumvented by incorporating nonwelded contact into the medium parameters using equivalent medium theory. We present an alternate method based on the homogeneous approach to finite differencing, whereby nonwelded contact boundary conditions are imposed explicitly. For simplicity, we develop the method in the SH‐wave case. In the homogeneous approach, nonwelded contact boundary conditions are discretized by introducing auxiliary, so‐called fictitious, grid points. Wavefield values at fictitious grid points are then used in the discrete equation of motion, so that the time‐evolved wavefield satisfies the correct boundary conditions. Although not as general as the heterogeneous approach, the homogeneous approach has the advantage of being relatively simple and manifestly satisfying nonwelded contact boundary conditions. For fractures aligned with the numerical grid, the homogeneous and heterogeneous approaches yield identical results. In particular, in both approaches nonwelded contact results in a larger maximum stable time step size than in the welded contact case.
We present a method for calculating the anisotropy parameter of a buried layer by inverting the total traveltimes of direct arrivals travelling from a surface source to a well‐bore receiver in a vertical seismic profiling (VSP) geometry. The method assumes two‐dimensional media. The medium above the layer of interest (and separated from it by a horizontal interface) can exhibit both anisotropy and inhomogeneity. Both the depth of the interface as well as the velocity field of the overburden are assumed to be known. We assume the layer of interest to be homogeneous and elliptically anisotropic, with the anisotropy described by a single parameter χ. We solve the function describing the traveltime between source and receiver explicitly for χ. The solution is expressed in terms of known quantities, such as the source and receiver locations, and in terms of quantities expressed as functions of the single argument xr, which is the horizontal coordinate of the refraction point on the interface. In view of Fermat's principle, the measured traveltime T possesses a stationary value or, considering direct arrivals, a minimum value, . This gives rise to a key result ‐‐ the condition that the actual anisotropy parameter . Owing to the explicit expression , this result allows a direct calculation of in the layer of interest. We perform an error analysis and show this inverse method to be stable. In particular, for horizontally layered media, a traveltime error of one millisecond results in a typical error of about 20% in the anisotropy parameter. This is almost one order of magnitude less than the error inherent in the slowness method, which uses a similar set of experimental data. We conclude by detailing possible extensions to non‐elliptical anisotropy and a non‐planar interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.