Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
To cite this article: Sujay K. Ashok et al JHEP06(2009) Abstract: We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing Killing form, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two-and threepoint functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of P SU (n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.
Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling.
Abstract:We compute the algebra of left and right currents for a principal chiral model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We define primary fields for the current algebra that match the affine primaries at the WessZumino-Witten points. The Maurer-Cartan equation together with current conservation tightly constrain the current-current and current-primary operator product expansions. The Hilbert space of the theory is generated by acting with the currents on primary fields. We compute the conformal dimensions of a subset of these states in the large radius limit. The current algebra is shown to be consistent with the quantum integrability of these models to several orders in perturbation theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.