Distribution planning is crucial for most companies since goods are rarely produced and consumed at the same place. Distribution costs, in addition, can be an important component of the final cost of the goods. In this paper, we study a VRP variant inspired on a real case of a large distribution company. In particular, we consider a VRP with a heterogeneous fleet of vehicles that are allowed to perform multiple trips. The problem also includes docking constraints in which some vehicles are unable to serve some particular customers. Given the combinatorial nature and the size of the problem, which discard the use of efficient exact methods for its resolution, a novel heuristic algorithm is proposed. The proposed algorithm, called GILS-VND, combines Iterated Local Search (ILS), Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood Descent (VND) procedures. Our method obtains better solutions than other approaches found in the related literature, and improves the solutions used by the company leading to * Corresponding author * * Principal corresponding author
This work presents three multi-objective heuristic algorithms based on Two-phase Pareto Local Search with VNS (2PPLS-VNS), Multi-objective Variable Neighborhood Search (MOVNS) and Non-dominated Sorting Genetic Algorithm II (NSGA-II). The algorithms were applied to the open-pit-mining operational planning problem with dynamic truck allocation (OPMOP). Approximations to Pareto sets generated by the developed algorithms were compared considering the hypervolume and spacing metrics. Computational experiments have shown the superiority of the algorithms based on VNS methods, which were able to find better sets of non-dominated solutions, more diversified and with an improved convergence.
This work addresses the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). Due to its complexity, we propose a heuristic algorithm for solving it, so-called GENVNS-TS-CL-PR. This algorithm combines the heuristic procedures Cheapest Insertion, Cheapest Insertion with multiple routes, GENIUS, Variable Neighborhood Search (VNS), Variable Neighborhood Descent (VND), Tabu Search (TS) and Path Relinking (PR). The first three procedures aim to obtain an good initial solution, and the VND and TS are used as local search methods for VNS. TS is called after some iterations without any improvement through of the VND. The PR procedure is called after each VNS iteration and it connects a local optimum with an elite solution generated during the search. The algorithm uses an strategy based on Candidate List to reduce the number of solutions evaluated in the solution space. The algorithm was tested on benchmark instances taken from the literature and it was able to generate high quality solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.