Infant formulas (IFs) can be defined as substitutes for human milk, which are mostly based on cow milk proteins. For sustainability reasons, alternative to animal proteins in food have to be considered. Plant proteins offer interesting nutritional and functional benefits for the development of innovative IFs. However, the behaviour of these proteins during processing and storage must ensure the physical stability and ability to reconstitution of IF powders, and that needs to be tested. This work aimed to study how a partial substitution of dairy proteins by plant proteins may influence the functional properties of 1 st age IFs. Three IFs were developed at a semi-industrial scale using two different processing routes. The IFs composition was identical, except that 50% of the proteins were whey proteins in the "reference IF" (RIF), and pea or faba bean proteins in the "plant IFs" (PIF and FIF, respectively). After reconstitution, the three IFs result in similarly stable emulsions with equivalent free fat release. In comparison to RIF, PIF and FIF were difficult to disperse, thus conducting to remaining insoluble particles. Thus, the protein source greatly influences IFs properties, and process parameters need to be adapted for each formulation to meet IFs quality criteria.
Infant formulas (IFs) are used as substitutes for human milk and are mostly based on cow milk proteins. For sustainability reasons, animal protein alternatives in food are increasingly being considered, as plant proteins offer interesting nutritional and functional benefits for the development of innovative IFs. This study aimed to assess how a partial substitution (50%) of dairy proteins with faba bean and pea proteins influenced the digestibility of IFs under simulated dynamic in vitro digestion, which were set up to mimic infant digestion. Pea- and faba bean-based IFs (PIF and FIF, respectively) have led to a faster aggregation than the reference milk-based IF (RIF) in the gastric compartment; that did not affect the digesta microstructure at the end of digestion. The extent of proteolysis was estimated via the hydrolysis degree, which was the highest for FIF (73%) and the lowest for RIF (50%). Finally, it was apparent that in vitro protein digestibility and protein digestibility-corrected amino acid score (PDCAAS)-like scores were similar for RIF and FIF (90% digestibility; 75% PDCAAS), but lower for PIF (75%; 67%). Therefore, this study confirms that faba bean proteins could be a good candidate for partial substitution of whey proteins in IFs from a nutritional point of view, provided that these in vitro results are confirmed in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.