Advanced embedded algorithms are growing in complexity and they are an essential contributor to the growth of autonomy in many areas. However, the promise held by these algorithms cannot be kept without proper attention to the considerably stronger design constraints that arise when the applications of interest, such as aerospace systems, are safety-critical. Formal verification is the process of proving or disproving the "correctness" of an algorithm with respect to a certain mathematical description of it by means of a computer. This article discusses the formal verification of the Ellipsoid method, a convex optimization algorithm, and its code implementation as it applies to receding horizon control. Options for encoding code properties and their proofs are detailed. The applicability and limitations of those code properties and proofs are presented as well. Finally, floating-point errors are taken into account in a numerical analysis of the Ellipsoid algorithm. Modifications to the algorithm are presented which can be used to control its numerical stability.
Wav2vec 2.0 is a state-of-the-art speech recognition model which maps speech audio waveforms into latent representations. The largest version of wav2vec 2.0 contains 317 million parameters. Hence, the inference latency of wav2vec 2.0 will be a bottleneck in production, leading to high costs and a significant environmental footprint. To improve wav2vec's applicability to a production setting, we explore multiple model compression methods borrowed from the domain of large language models. Using a teacher-student approach, we distilled the knowledge from the original wav2vec 2.0 model into a student model, which is 2 times faster, 4.8 times smaller than the original model. More importantly, the student model is 2 times more energy efficient than the original model in terms of CO 2 emission. This increase in performance is accomplished with only a 7% degradation in word error rate (WER). Our quantized model is 3.6 times smaller than the original model, with only a 0.1% degradation in WER. To the best of our knowledge, this is the first work that compresses wav2vec 2.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.