Abstract. Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.
This study presents the first cosmogenic 36Cl surface exposure data from a moraine in the Former Yugoslav Republic of Macedonia (FYROM). Five limestone boulders from a terminal moraine in the Galicica Mountains (40.94°N, 20.83°E, 2050 m a.s.l.) were used for cosmogenic 36Cl surface exposure dating. The 36Cl concentrations from the five boulders are identical within their measurement uncertainties ruling out major effects of inheritance, erosion, or snow cover. The calculated ages are very consistent ranging from 11.3 to 12.8 ka (mean 12 ka) after applying a Caspallation production rate of 56 at g-1 a-1 (LSD scaling) and correction for 5 mm ka-1 carbonate weathering and 2 % snow shielding. The applied corrections for weathering and snow shielding cause a shift to older ages in the order of magnitude of ca. 5 % on average, making the production rate the main impact on exposure ages. The ages point to a moraine formation during the Younger Dryas period, consistent with the timing of the last deglaciation in the Galicica Mountains derived from previous geomorphological studies in the area. The formation of a glacier was likely favoured by several topoclimatic factors, accounting for additional snow input. This interpretation is in line with regional studies on glaciation chronologies from Šara Range (FYROM/Republic of Kosovo), Retezat Mountains (Romania), Mount Orjen (Montenegro) and Durmitor (Montenegro). Lake sediment analyses of lakes Prespa (Republic of Albania/ FYROM/Greece), Maliq (Republic of Albania) and Dojran (FYROM/Greece) indicate that cold conditions promoted the formation of a local cirque glacier. However, studies of sediment records of the adjacent lakes Ohrid (Republic of Albania/FYROM) and Prespa do not indicate the presence of a proximal glaciation. An explanation might be a combination of the small size of the cirque glacier, generating only small amounts of debris, and the karstic bedrock, which hampers fluvial transport and acts by its aquifer system as a natural sediment trap, as the fluvial transport of the sediments to the lakes is absorbed by the karst system.
Abstract. Lake Ohrid (FYROM, Albania) is thought to be more than 1.2 million years old and hosts more than 200 endemic species. As a target of the International Continental Scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on nine tephra layers (1st order tie points), and on tuning of biogeochemical proxy data to orbital parameters (2nd order tie points) and to the global benthic isotope stack LR04 (3rd order tie points), respectively, the analyzed sediment sequence covers the last 640 ka. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilmnion in during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for MIS11 and 5, whereas MIS15, 13, 9, and 7 were comparable cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6 whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 3. Interglacial-like conditions occurred during parts of MIS14, and 8.
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial historyof the Ladogabasin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio-) geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age-depth model reveals the onset of glacial varve sedimentation at 13 910AE140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5-15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varvethickness variations, conjoined with grain-size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post-dates the drainage of the Baltic Ice Lake aswell as the formation of the Salpausselk€ a II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.