Mechanochromophores based on conformational changes of donor−acceptor−donor (DAD) springs allow sensing of forces acting on polymer chains by monotonic changes of absorbance or photoluminescence (PL) wavelength. Here, we identify a series of thiophene (D)-flanked quinoxalines (A) as molecular torsional springs for force sensing in bulk polymers at room temperature. The mode of DAD linkage to the polymer matrix and linker rigidity are key parameters that influence the efficacy of force transduction to the DAD spring and thus mechanochromic response, as probed by in situ PL spectroscopy of bulk films during stress−strain experiments. The largest shift of the PL maximum, and thus the highest sensitivity, is obtained from an ansa-DAD spring exhibiting bridged D units and a stiff A linker. Using detailed spectroscopy and density functional theory calculations, we reveal conformer redistribution in the form of a thiophene ring flip as the major part of the overall mechanochromic response. At forces as low as 27 pN at early stages of deformation, the ring flip precedes mechanically induced planarization of the ansa-DAD spring, the latter process producing a PL shift of 21 nm nN −1 . Within the stress−strain diagram, the thiophene ring flip and DAD planarization are thus two separated processes that also cause irreversible and reversible mechanochromic responses, respectively, upon sample failure. As the thiophene ring flip requires much smaller forces than planarization of the DAD spring, such micromechanical motion gives access to sensing of tiny forces and expands both sensitivity and the force range of conformational mechanochromophores.
A number of amines with three bulky alkyl groups at the nitrogen, which surpass the steric crowding of triisopropylamine considerably, were prepared by using different synthetic methods. It turned out that treatment of N-chlorodialkylamines with organometallic compounds, for example, Grignard reagents, in the presence of a major excess of tetramethylenediamine offered the most effective access to the target compounds. The limits of this method were also tested. The trialkylamines underwent a dealkylation reaction, depending on the degree of steric stress, even at ambient temperature. Because olefins were formed in this transformation, it showed some similarity with the Hofmann elimination. However, the thermal decay of sterically overcrowded tertiary amines was not promoted by bases. Instead, this reaction was strongly accelerated by protic conditions and even by trace amounts of water. Reaction mechanisms, which were analyzed with the help of quantum chemical calculations, are suggested to explain the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.