Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings.
The field of radiochemistry is moving towards exclusive use of automated synthesis modules for production of clinical radiopharmaceutical doses. Such a move comes with many advantages, but also presents radiochemists with the challenge of re-configuring synthesis modules for production of radiopharmaceuticals that require non-conventional radiochemistry whilst maintaining full automation. This review showcases the versatility of the Tracerlab FXFN synthesis module by presenting simple, fully automated methods for producing [18F]FLT, [18F]FAZA, [18F]MPPF, [18F]FEOBV, [18F]sodium fluoride, [18F]fluorocholine and [18F]SFB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.