A supplemental appendix to this article is published electronically only at http://jdr.sagepub.com/supplemental. ABSTRACT Catecholamines are present in saliva, but their influence on oral epithelium is not understood. Because psychological stress increases salivary catecholamines and impairs oral mucosal wound healing, we sought to determine if epithelial adrenergic signaling could link these two findings. We found that cultured human oral keratinocytes (HOK) express the α 2B -and β 2 -adrenergic receptors (ARs). Exposure of HOK to either epinephrine or the β-AR agonist, isoproterenol, reduced migratory speed and decreased in vitro scratch wound healing. Incubation with the β-AR antagonist timolol reversed the catecholamine-induced effects, indicating that the observed response is mediated by β-AR. Epinephrine treatment decreased phosphorylation of the mitogen-activated protein kinases (MAPK) ERK1/2 and p38; these decreases were also reversed with timolol. Cultured HOK express enzymes of the epinephrine synthetic pathway, and generate epinephrine. These findings demonstrate that stress-induced elevations of salivary catecholamines signal through MAPK pathways, and result in impaired oral keratinocyte migration required for healing.
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple
in-vitro
and
in-vivo
BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity.
Proper regulation of osteoclast (OCL) function is critical for normal bone homeostasis. Bone morphogenetic protein (BMP) signaling and its regulation have been shown to have direct effects on OCL differentiation and activity. One of the major modulators of BMP signaling in the extracellular space is the secreted protein twisted gastrulation (TWSG1), which can inhibit BMP signaling and OCL differentiation. In this study we examine specific N-terminal regions of TWSG1 protein that have been previously proposed as BMP binding sites to determine whether TWSG1 binding to BMPs is required for its inhibitory effects on OCLs. We demonstrate that overexpression of wild type TWSG1 suppresses osteoclastogenesis, while overexpression of mutant TWSG1 proteins (W66A and N80Q/N146Q mutants), which cannot bind BMPs, leads to increased BMP signaling, enhanced osteoclastogenesis, increased resorptive activity and expression of OCL-specific genes. Our results show that BMP binding is required for TWSG1-mediated inhibition of OCL formation and function, and validate the critical functional regions within the TWSG1 protein for these interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.