Unlike in metazoans, plant microRNAs (miRNAs) undergo stepwise nuclear maturation before engaging cytosolic, sequence-complementary transcripts in association with the silencing effector protein ARGONAUTE1 (AGO1). Since their discovery, how and under which form plant miRNAs translocate to the cytosol has remained unclear, as has their sub-cellular AGO1 loading site(s). Here, we show that the N termini of all plant AGO1s contain a nuclear-localization (NLS) and nuclear-export signal (NES) that, in Arabidopsis thaliana (At), enables AtAGO1 nucleo-cytosolic shuttling in a Leptomycin-B-inhibited manner, diagnostic of CRM1(EXPO1)/NES-dependent nuclear export. Nuclear-only AtAGO1 contains the same 2'O-methylated miRNA cohorts as its nucleo-cytosolic counterpart, but it preferentially interacts with the miRNA loading chaperone HSP90. Furthermore, mature miRNA translocation and miRNA-mediated silencing both require AtAGO1 nucleo-cytosolic shuttling. These findings lead us to propose a substantially revised view of the plant miRNA pathway in which miRNAs are matured, methylated, loaded into AGO1 in the nucleus, and exported to the cytosol as AGO1:miRNA complexes in a CRM1(EXPO1)/NES-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.