Hexahedral meshes are structured as a set of ordered layer of hexes which makes local topological modifications difficult to do. For instance, removing an hex generally implies to remove a complete layer of hexes. Few works focus on local topological modifications in hexahedral meshes. In this paper, we provide some results which extend and complete some existing works [1,14,15,17], proving in a first part that the flipping operations defined by M. Bern and D. Eppstein are combinatorially free and showing in a second part how to introduce a Boy surface into a dual mesh. This operation allows us to modify the parity of the number of hexes in the primal mesh, thing that can not be done by the M. Bern and D. Eppstein basis of operations. Résumé. Tout maillage hexaédrique est structuré comme un ensemble ordonné de couches de mailles. Cette structuration rend difficile les modifications topologiques locales du maillage. Par exemple, retirer une maille du maillage nécessite souvent le retrait d'une couche complète de mailles. Peu de travaux s'intéressentà ce problème. Dans ce papier, nous donnons différents résultats quiétendent et complètent des travaux existants [1, 14, 15, 17] prouvant dans une première partie que les opérations de flipping définies par M. Bern et D. Eppstein sont libres (au sens combinatoire) et montrant dans une seconde partie comment introduire concrètement une surface de Boy dans un maillage dual d'un maillage hexaédrique. Ceci permet de modifier la parité du nombre de mailles contenues dans le maillage primal, ce qui n'est pas possible avec la base d'opérations de M. Bern et D. Eppstein.
We consider a simplified model of a coupled parabolic PDE-ODE describing heat transfer within buildings. We describe an identification procedure able to reconstruct the parameters of the model. The response of the model is nonlinear with respect to its parameters and the reconstruction of the parameters is achieved by the introduction of a new vectorial descent stepsize, which improves the convergence of the Levenberg-Marquardt minimization algorithm. The new vectorial descent stepsize can have negative and positive entries of different sizes, which fundamentally differs from standard scalar descent stepsize. The new algorithm is proved to converge and to outperform the standard scalar descent strategy. We also propose algorithms for the initialization of the parameters needed by the reconstruction procedure, when no a priori knowledge is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.