Integration of the priming effect (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, PE has not yet been incorporated into any ecosystem models. Here, we build plant/soil models to explore how PE and microbial diversity influence soil/plant interactions and ecosystem C and nitrogen (N) dynamics in response to global change (elevated CO 2 and atmospheric N depositions). Our results show that plant persistence, soil organic matter (SOM) accumulation, and low N leaching in undisturbed ecosystems relies on a fine adjustment of microbial N mineralization to plant N uptake. This adjustment can be modeled in the SYMPHONY model by considering the destruction of SOM through PE, and the interactions between two microbial functional groups: SOM decomposers and SOM builders. After estimation of parameters, SYMPHONY provided realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. Consistent with recent observations, SYMPHONY predicted a CO 2 -induced modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock. SYMPHONY also indicated that atmospheric N deposition may promote SOM accumulation via changes in the structure and metabolic activities of microbial communities. Collectively, these results suggest that the PE and functional role of microbial diversity may be incorporated in ecosystem models with a few additional parameters, improving accuracy of predictions.
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N O emissions. Yield-scaled N O emissions (N O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N O emissions at field scale is discussed.
About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961–2010. Here “potential grass-fed ruminant livestock density” denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961–2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.
Biogeochemical simulation models are important tools for describing and quantifying the contribution of agricultural systems to C sequestration and GHG source/sink status. The abundance of simulation tools developed over recent decades, however, creates a difficulty because predictions from different models show large variability. Discrepancies between the conclusions of different modelling studies are often ascribed to differences in the physical and biogeochemical processes incorporated in equations of C and N cycles and their interactions. Here we review the literature to determine the state-of-the-art in modelling agricultural (crop and grassland) systems. In order to carry out this study, we selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality and comprehensiveness of underlying processes related to pedo-climatic conditions and management practices, but also with respect to time and space of application, and for their accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed by limitations in the algorithms simulating the effects of management practices (33.1%). The multiplicity of scales in both time and space is a fundamental feature, which explains the remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future development of C and N models. They include the explicit representation of soil microbial biomass to drive soil organic matter turnover, the effect of N shortage on SOM decomposition, the improvements related to the production and consumption of gases and an adequate simulations of gas transport in soil. On these bases, the assessment of trends and gaps in the modelling approaches currently employed to represent biogeochemical cycles in crop and grassland systems appears an essential step for future research.
Abstract. This study describes how management of grasslands is included in the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based ecosystem model designed for large-scale applications, and how management affects modeled grassland-atmosphere CO 2 fluxes. The new model, ORCHIDEE-GM (grassland management) is enabled with a management module inspired from a grassland model (PaSim, version 5.0), with two grassland management practices being considered, cutting and grazing. The evaluation of the results from ORCHIDEE compared with those of ORCHIDEE-GM at 11 European sites, equipped with eddy covariance and biometric measurements, shows that ORCHIDEE-GM can realistically capture the cut-induced seasonal variation in biometric variables (LAI: leaf area index; AGB: aboveground biomass) and in CO 2 fluxes (GPP: gross primary productivity; TER: total ecosystem respiration; and NEE: net ecosystem exchange). However, improvements at grazing sites are only marginal in ORCHIDEE-GM due to the difficulty in accounting for continuous grazing disturbance and its induced complex animalvegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. For annual CO 2 fluxes, the NEE bias and RMSE (root mean square error) in ORCHIDEE-GM are reduced by 53 % and 20 %, respectively, compared to ORCHIDEE. ORCHIDEE-GM is capable of modeling the net carbon balance (NBP) of managed temperate grasslands (37 ± 30 gC m −2 yr −1 (P < 0.01) over the 11 sites) because the management module contains provisions to simulate the carbon fluxes of forage yield, herbage consumption, animal respiration and methane emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.