In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.
The interaction of bilayer vesicles with hard nanoparticles is of great relevance to the field of nanotechnology, e.g., its impact on health and safety matters, and also as vesicles are important as delivery vehicles. In this work we describe hybrid systems composed of zwitterionic phospholipid vesicles (DPPC), which are below the phase transition temperature, and added silica nanoparticles (SiNPs) of much smaller size. The initial DPPC unilamellar vesicles, obtained by extrusion, are rather unstable and age but the rate of ageing can be controlled over a large time range by the amount of added SiNPs. For low addition they become destabilized whereas larger amounts of SiNPs enhance the stability largely as confirmed by dynamic light scattering (DLS). z-Potential and DSC measurements confirm the binding of the SiNPs onto the phospholipid vesicles, which stabilizes the vesicles against flocculation by rendering the z-potential more negative. This effect appears above a specific SiNP concentration, and is the result of the adsorption of the negatively charged nanoparticles onto the outer surface of the liposome leading to decorated vesicles as proven by cryogenic transmission electron microscopy (cryo-TEM). Small amounts of surface-adsorbed SiNPs initially lead to a bridging of vesicles thereby enhancing flocculation, while higher amounts render the vesicles much more negatively charged and thereby longtime stable. This stability has an optimum at neutral pH and for low ionic strength. Thus we show that the addition of the SiNPs is a versatile way to control the stability of gel-state phospholipid vesicles and also to modulate their surface structure in a systematic fashion. This is not only of importance for understanding the fundamental interaction between SiNPs and bilayer vesicles, but also with respect to using silica particles as formulation aids for phospholipid dispersions.
The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.
Attaching hydrogels to soft internal tissues is a key to the development of a number of biomedical devices. Nevertheless, the wet nature of hydrogels and tissues renders this adhesion most difficult to achieve and control. Here, we show that the transport of fluids across hydrogel−tissue interfaces plays a central role in adhesion. Using ex vivo peeling experiments on porcine liver, we characterized the adhesion between model hydrogel membranes and the liver capsule and parenchyma. By varying the contact time, the tissue hydration, and the swelling ratio of the hydrogel membrane, a transition between two peeling regimes is found: a lubricated regime where a liquid layer wets the interface, yielding low adhesion energies (0.1 J/m2 to 1 J/m2), and an adhesive regime with a solid binding between hydrogel and tissues and higher adhesion energies (1 J/m2 to 10 J/m2). We show that this transition corresponds to a draining of the interface inducing a local dehydration of the tissues, which become intrinsically adhesive. A simple model taking into account the microanatomy of tissues captures the transition for both the liver capsule and parenchyma. In vivo experiments demonstrate that this effect still holds on actively hydrated tissues like the liver capsule and show that adhesion can be strongly enhanced when using superabsorbent hydrogel meshes. These results shed light on the design of predictive bioadhesion tests as well as on the development of improved bioadhesive strategies exploiting interfacial fluid transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.