Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na + -dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B 0 AT1 (SLC6A19) and suggested for the L-proline transporter SIT1 (IMINO B , SLC6A20) and for B 0 AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B 0 AT1 and SIT1. Some mutations of B 0 AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.
ACE2 is a type I membrane protein with extracellular carboxypeptidase activity displaying a broad tissue distribution with highest expression levels at the brush border membrane (BBM) of small intestine enterocytes and a lower expression in stomach and colon. In small intestinal mucosa, ACE2 mRNA expression appears to increase with age and to display higher levels in patients taking ACE-inhibitors (ACE-I). There, ACE2 protein heterodimerizes with the neutral amino acid transporter Broad neutral Amino acid Transporter 1 (B0AT1) (SLC6A19) or the imino acid transporter Sodium-dependent Imino Transporter 1 (SIT1) (SLC6A20), associations that are required for the surface expression of these transport proteins. These heterodimers can form quaternary structures able to function as binding sites for SARS-CoV-2 spike glycoproteins. The heterodimerization of the carboxypeptidase ACE2 with B0AT1 is suggested to favor the direct supply of substrate amino acids to the transporter, but whether this association impacts the ability of ACE2 to mediate viral infection is not known. B0AT1 mutations cause Hartnup disorder, a condition characterized by neutral aminoaciduria and, in some cases, pellagra-like symptoms, such as photosensitive rash, diarrhea, and cerebellar ataxia. Correspondingly, the lack of ACE2 and the concurrent absence of B0AT1 expression in small intestine causes a decrease in l-tryptophan absorption, niacin deficiency, decreased intestinal antimicrobial peptide production, and increased susceptibility to inflammatory bowel disease (IBD) in mice. Thus, the abundant expression of ACE2 in small intestine and its association with amino acid transporters appears to play a crucial role for the digestion of peptides and the absorption of amino acids and, thereby, for the maintenance of structural and functional gut integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.