In this work, the effect of ply stacking sequence of carbon/epoxy laminates subjected to flexural, tensile and impact loading was investigated. Five laminates with different stacking configurations were produced using the hand-laying-up technique. This includes a unidirectional laminate, cross-ply laminates, and quasi-isotropic laminates. Following the autoclave curing process, the responses of the composites to bending, tension and impact force were determined according to ASTM standards, and their corresponding strength, stiffness as well as impact energy were evaluated. Likewise, the flexural failure mode associated with each laminate was characterised using an optical microscope. The unidirectional laminates have higher flexural and tensile strength compared to the cross-ply and quasi-isotropic laminates. Moreover, as a result of material symmetry, the flexural and tensile modulus of symmetric cross-ply laminate improved by 59.5% and 3.97% compared to the unsymmetric counterpart. Furthermore, the quasi-isotropic laminates with absorption energy of 116.2 kJ/m2 and 115.12 kJ/m2, respectively have higher impact resistance compared to other samples.
This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.
The presented study focuses on measuring volume changes in elastomeric materials using digital image correlation (DIC), specifically the 2D DIC universal system and the 2D DIC video-extensometer directly implemented to the universal testing machine. Optical measurement methods were applied in twodimensional (2D) configurations during the mechanical testing of dumbbell-shaped test specimens under uniaxial tension. The measured data were used to determine the dependencies of the bulk modulus and Poisson's ratio on the strain. The dependencies obtained by both methods correspond to the model behavior of rubber-like materials. Compared to the 2D DIC implemented video-extensometer, the 2D DIC universal system provides a tool for measuring transverse and longitudinal strain, and a wide range of post-processing options, including change of the input parameters, settings, or calculation relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.