Decisions on shipment size in freight transport are often seen to represent a whole set of logistics decisions made by shippers and recipient. Also, shipment sizes has a large impact on transport mode choice.Therefore, they are an important aspect in the modeling of freight transport demand, as they allow to display the reactions of various stakeholders on policy measures. In this article, a model for the discrete choice of shipment sizes is applied to interregional road freight transport. Preferences of actors are reflected by a total logistics cost expression. A Latent Class Analysis approach is applied to identify groups of transport cases with similar logistics requirements. The classification reduces significantly heterogeneity in behavior. Reactions of actors on external influences such as policy measures could be predicted more accurately.
Freight transport demand models are generally based on administrative commodity type segmentation which are usually not tailored to behavioral freight transport demand modelling. Recent literature has explored new approaches to segment freight transport demand, notably based on latent class analysis, with promising results. In particular, empirical evidence from road freight transport modelling in Germany hints at the importance of conditioning and handling constraints as a sound basis for segmentation. However, this literature is currently sparse and based on small samples. Before it can be accepted that conditioning should be integrated in the state-of-the-art doctrine of freight data collection and model specification, more evidence is required. The objective of this article is to contribute to the issue. Using detailed data on shipments transported in France, a model of choice of shipment size with latent classes is estimated. The choice of shipment size is modelled as a process of total logistic cost minimization. Latent class analysis leverages the wide range of variables available in the dataset, to provide five categories of shipments which are both contrasted, internally homogenous, and directly usable to update freight collection protocols. The groups are: "‘standard temperature-controlled food products"’, "‘special transports"’, "‘bulk cargo"’, "‘miscellaneous standard cargo in bags"’, "‘palletised standard cargo"’. This segmentation is highly consistent with the empirical evidence from Germany and also leads to better estimates of shipment size choices than administrative segmentation. As a conclusion, the finding that conditioning and handling information is essential to understanding and modelling freight transport can be regarded as more robust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.