(Carboxymethyl)lysine-modified albumin isolated from poorly controlled type 1 diabetic patients impairs ABCA-1-mediated reverse cholesterol transport and elicits intracellular lipid accumulation, possibly contributing to atherosclerosis.
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Advanced glycation end products (AGE) are elevated in diabetes mellitus (DM) and predict the development of atherosclerosis. AGE-albumin induces oxidative stress, which is linked to a reduction in ABCA-1 and cholesterol efflux. We characterized the glycation level of human serum albumin (HSA) isolated from poorly controlled DM2 (n = 11) patients compared with that of control (C, n = 12) individuals and determined the mechanism by which DM2-HSA can interfere in macrophage lipid accumulation. The HSA glycation level was analyzed by MALDI/MS. Macrophages were treated for 18 h with C- or DM2-HSA to measure the (14) C-cholesterol efflux, the intracellular lipid accumulation and the cellular ABCA-1 protein content. Agilent arrays (44000 probes) were used to analyze gene expression, and the differentially expressed genes were validated by real-time RT-PCR. An increased mean mass was observed in DM2-HSA compared with C-HSA, reflecting the condensation of at least 5 units of glucose. The cholesterol efflux mediated by apo AI, HDL3 , and HDL2 was impaired in DM2-HSA-treated cells, which was related to greater intracellular lipid accumulation. DM2-HSA decreased Abcg1 mRNA expression by 26%. Abca1 mRNA was unchanged, although the final ABCA-1 protein content decreased. Compared with C-HAS-treated cells, NADPH oxidase 4 mRNA expression increased in cells after DM2-HSA treatment. Stearoyl-Coenzyme A desaturase 1, janus kinase 2, and low density lipoprotein receptor mRNAs were reduced by DM2-HSA. The level of glycation that occurs in vivo in DM2-HSA-treated cells selectively alters macrophage gene expression, impairing cholesterol efflux and eliciting intracellular lipid accumulation, which contribute to atherogenesis, in individuals with DM2.
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.