Key Points
The Gardos channel is a potassium channel involved in red cell volume modification. A mutation in KCNN4 encoding the Gardos channel is presented as the genetic basis for a new type of hereditary xerocytosis.
The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca-activated K channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca homeostasis in epithelial cancers.
Sig1R (Sigma-1receptor) is a 25-kDa protein structurally unrelated to other mammalian proteins. Sig1R is present in brain, liver, and heart and is overexpressed in cancer cells. Studies using exogenous sigma ligands have shown that Sig1R interacts with a variety of ion channels, but its intrinsic function and mechanism of action remain unclear. The human ether-à-gogo related gene (hERG) encodes a cardiac channel that is also abnormally expressed in many primary human cancers, potentiating tumor progression through the modulation of extracellular matrix adhesive interactions. We show herein that sigma ligands inhibit hERG current density and cell adhesion to fibronectin in K562 myeloid leukemia cells. Heterologous expression in Xenopus oocytes demonstrates that Sig1R potentiates hERG current by stimulating channel subunit biosynthesis. Silencing Sig1R in leukemic K562 cells depresses hERG current density and cell adhesion to fibronectin by reducing hERG membrane expression. In K562 cells, Sig1R silencing does not modify hERG mRNA contents but reduces hERG mature form densities. In HEK cells expressing hERG and Sig1R, both proteins co-immunoprecipitate, demonstrating a physical association. Finally, Sig1R expression enhances both channel protein maturation and stability. Altogether, these results demonstrate for the first time that Sig1R controls ion channel expression through the regulation of subunit trafficking activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.