The retinoblastoma protein (RB) has previously been shown to facilitate adipocyte differentiation by inducing cell cycle arrest and enhancing the transactivation by the adipogenic CCAAT/enhancer binding proteins (C/EBP). We show here that the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor pivotal for adipogenesis, promotes adipocyte differentiation more efficiently in the absence of RB. PPARgamma and RB were shown to coimmunoprecipitate, and this PPARgamma-RB complex also contains the histone deacetylase HDAC3, thereby attenuating PPARgamma's capacity to drive gene expression and adipocyte differentiation. Dissociation of the PPARgamma-RB-HDAC3 complex by RB phosphorylation or by inhibition of HDAC activity stimulates adipocyte differentiation. These observations underscore an important function of both RB and HDAC3 in fine-tuning PPARgamma activity and adipocyte differentiation.
Sterol Delta8-Delta7 isomerases (SIs) catalyze the shift of the double bond from C8-9 to C7-8 in the B-ring of sterols. Surprisingly, the isoenzymes in fungi (ERG2p) and vertebrates [emopamil binding protein (EBP)] are structurally completely unrelated, whereas the sigma1 receptor, a mammalian protein of unknown function, bears significant similarity with the yeast ERG2p. Here, we compare the drug binding properties of SIs and related proteins with [3H]ifenprodil as a common high affinity radioligand (Kd = 1.4-19 nM), demonstrating an intimate pharmacological relationship among ERG2p, sigma1 receptor, and EBP. This renders SIs a remarkable example for structurally diverse enzymes with similar pharmacological profiles and the propensity to bind drugs from different chemical groups with high affinity. We identified a variety of experimental drugs with nanomolar affinity for the human EBP (Ki = 0.5-14 nM) such as MDL28815, AY9944, triparanol, and U18666A. These compounds, as well as the fungicide tridemorph and the clinically used drugs tamoxifen, clomiphene, amiodarone, and opipramol, inhibit the in vitro activity of the recombinant human EBP (IC50 = 0.015-54 microM). The high affinity of the human EBP for 3H-tamoxifen (Kd = 3 +/- 2 nM) implies that the EBP carries the previously described microsomal antiestrogen binding site. Interactions of the EBP with structurally diverse lipophilic amines suggest that novel compounds of related structure should be counterscreened for inhibition of the enzyme to avoid interference with sterol Delta8-Delta7 isomerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.