SummaryAccurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV.
Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region.
African swine fever remains an important pig disease globally in view of its rapid spread, economic impacts and food implications, with no option of vaccination or treatment. The Southern Highlands zone of Tanzania, an important pig-producing hub in East Africa, is endemic with African swine fever (ASF). From approximately the year 2010, the recurrence of outbreaks has been observed and it has now become a predictable pattern. We conducted exploratory participatory epidemiology and participatory disease surveillance in the Southern Highlands to understand the pig sector and the drivers and facilitators of infections, risk factors and dynamics of ASF in this important pig-producing area. Pigs continue to play a major role in rural livelihoods in the Southern Highlands and pork is a major animal protein source. Outbreaks of diseases, particularly ASF, have continued to militate against the scaling up of pig operations in the Southern Highlands. Intra- and inter-district and trans-border transnational outbreaks of ASF, the most common disease in the Southern Highlands, continue to occur. Trade and marketing systems, management systems, and lack of biosecurity, as well as anthropogenic (human) issues, animals and fomites, were identified as risk factors and facilitators of ASF infection. Changes in human behavior and communication in trade and marketing systems in the value chain, biosecurity and pig management practices are warranted. Relevant training must be implemented alongside the launch of the national ASF control strategy for Tanzania, which already established a roadmap for combating ASF in Tanzania. The high-risk points (slaughter slabs, border areas, and farms with poor biosecurity) and high-risk period (November–March) along the pig value chain must be targeted as critical control points for interventions in order to reduce the burden of infection.
SummaryThis paper describes the molecular characterization of foot-and-mouth disease viruses (FMDV) recovered from outbreaks in Tanzania that occurred between 1967 and 2009. A total of 44 FMDV isolates, containing representatives of serotypes O, A, SAT 1 and SAT 2 from 13 regions of Tanzania, were selected from the FAO World Reference Laboratory for FMD (WRLFMD) virus collection. VP1 nucleotide sequences were determined for RT-PCR amplicons, and phylogenetic reconstructions were determined by maximum likelihood and neighbour-joining methods. These analyses showed that Tanzanian type O viruses fell into the EAST AFRICA 2 (EA-2) topotype, type A viruses fell into the AFRICA topotype (genotype I), type SAT 1 viruses into topotype I and type SAT 2 viruses into topotype IV. Taken together, these findings reveal that serotypes O, A, SAT 1 and SAT 2 that caused FMD outbreaks in Tanzania were genetically related to lineages and topotypes occurring in the East African region. The close genetic relationship of viruses in Tanzania to those from other countries suggests that animal movements can contribute to virus dispersal in sub-Saharan Africa. This is the first molecular description of viruses circulating in Tanzania and highlights the need for further sampling of representative viruses from the region so as to elucidate the complex epidemiology of FMD in Tanzania and sub-Saharan Africa.
This study was conducted to investigate the presence of foot-and-mouth disease virus (FMDV) in different geographic locations of Tanzania. Epithelial tissues and fluids (n = 364) were collected from cattle exhibiting oral and foot vesicular lesions suggestive of FMD and submitted for routine FMD diagnosis. The analysis of these samples collected during the period of 2002 and 2010 was performed by serotype-specific antigen capture ELISA to determine the presence of FMDV. The results of this study indicated that 167 out of 364 (46.1%) of the samples contained FMDV antigen. Of the 167 positive samples, 37 (28.4%) were type O, 7 (4.1%) type A, 45 (21.9%) SAT 1 and 79 (45.6%) SAT 2. Two FMDV serotypes (O and SAT 2) were widely distributed throughout Tanzania whilst SAT 1 and A types were only found in the Eastern zone. Our findings suggest that serotypes A, O, SAT 1 and SAT 2 prevail in Tanzania and are associated with the recent FMD outbreaks. The lack of comprehensive animal movement records and inconsistent vaccination programmes make it difficult to determine the exact source of FMD outbreaks or to trace the transmission of the disease over time. Therefore, further collection and analysis of samples from domestic and wild animals are being undertaken to investigate the genetic and antigenic characteristics of the circulating strains, so that a rational method to control FMD in Tanzania and the neighbouring countries can be recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.