Recent advances in concrete recycling technology focus on novel fragmentation techniques to obtain aggregate fractions with low cement matrix content. This study assesses the aggregate liberation effectiveness of four different treatment processes including standard and innovative concrete fragmentation techniques. Lab-made concrete samples were subjected to either standard mechanical crushing technique (SMT) or electrodynamic fragmentation (EDF). For both fragmentation processes, the influence of a microwave weakening pre-treatment technique (MWT) was investigated. A detailed analysis of the particle size distribution was carried out on samples after fragmentation. The >5.6 mm fraction was more deeply characterized for aggregate selective liberation (manual classification to separate liberated aggregates) and for cement matrix content (thermogravimetric measurements). Results highlight that EDF treatment is more effective than SMT treatment to selectively liberate aggregates and to decrease the cement matrix content of the >5.6 mm fraction. EDF fully liberates up to 37 wt.% of the >5.6 mm natural aggregates, while SMT only liberates 14–16 wt.%. MWT pre-treatment positively affects aggregate liberation and cement matrix removal only if used in combination with SMT; no significant effect in combination with EDF was recorded. These results of this study can provide insights to successfully implement innovative technology in concrete recycling plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.