Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.
It is anticipated that in the near future, the penetration rate of vehicles with some autonomous capabilities (e.g., adaptive cruise control, lane following, full automation, etc.) will increase on roadways. This work investigates the potential reduction of vehicular emissions caused by the whole traffic stream, when a small number of autonomous vehicles (e.g., 5% of the vehicle fleet) are designed to stabilize the traffic flow and dampen stop-and-go waves. To demonstrate this, vehicle velocity and acceleration data are collected from a series of field experiments that use a single autonomous-capable vehicle to dampen traffic waves on a circular ring road with 20 to 21 human-piloted vehicles. From the experimental data, vehicle emissions (hydrocarbons, carbon monoxide, carbon dioxide, and nitrogen oxides) are estimated using the MOVES emissions model. This work finds that vehicle emissions of the entire fleet may be reduced by between 15% (for carbon dioxide) and 73% (for nitrogen oxides) when stop-andgo waves are reduced or eliminated by the dampening action of the autonomous vehicle in the flow of human drivers. This is possible if a small fraction (∼5%) of vehicles are autonomous and designed to actively dampen traffic waves. However, these reductions in emissions apply
This article is motivated by the lack of empirical data on the performance of commercially available Society of Automotive Engineers level one automated driving systems. To address this, a set of car following experiments are conducted to collect data from a 2015 luxury electric vehicle equipped with a commercial adaptive cruise control (ACC) system. Velocity, relative velocity, and spacing data collected during the experiments are used to calibrate an optimal velocity relative velocity car following model for both the minimum and maximum following settings. The string stability of both calibrated models is assessed, and it is determined that the best-fit models are string unstable, indicating they are not able to prevent all traffic disturbances from amplifying into phantom jams. Based on the calibrated models, we identify the consequences of the string unstable ACC system on synthetic and empirical lead vehicle disturbances, highlighting that some disturbances can be dampened even with string unstable commercial ACC platoons of moderate size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.