The mechanism of alternative splicing in the transcriptome may increase the proteome diversity in eukaryotes. In proteomics, several studies aim to use protein sequence repositories to annotate MS experiments or to detect differentially expressed proteins. However, the available protein sequence repositories are not designed to fully detect protein isoforms derived from mRNA splice variants. To foster knowledge for the field, here we introduce SpliceProt, a new protein sequence repository of transcriptome experimental data used to investigate for putative splice variants in human proteomes. Current version of SpliceProt contains 159 719 non-redundant putative polypeptide sequences. The assessment of the potential of SpliceProt in detecting new protein isoforms resulting from alternative splicing was performed by using publicly available proteomics data. We detected 173 peptides hypothetically derived from splice variants, which 54 of them are not present in UniprotKB/TrEMBL sequence repository. In comparison to other protein sequence repositories, SpliceProt contains a greater number of unique peptides and is able to detect more splice variants. Therefore, SpliceProt provides a solution for the annotation of proteomics experiments regarding splice isofoms. The repository files containing the translated sequences of the predicted splice variants and a visualization tool are freely available at http://lbbc.inca.gov.br/spliceprot.
Alternative splicing (AS) may increase the number of proteoforms produced by a gene. Alzheimer’s disease (AD) is a neurodegenerative disease with well-characterized AS proteoforms. In this study, we used a proteogenomics strategy to build a customized protein sequence database and identify orthologous AS proteoforms between humans and mice on publicly available shotgun proteomics (MS/MS) data of the corpus callosum (CC) and olfactory bulb (OB). Identical proteotypic peptides of six orthologous AS proteoforms were found in both species: PKM1 (gene PKM/Pkm), STXBP1a (gene STXBP1/Stxbp1), Isoform 3 (gene HNRNPK/Hnrnpk), LCRMP-1 (gene CRMP1/Crmp1), SP3 (gene CADM1/Cadm1), and PKCβII (gene PRKCB/Prkcb). These AS variants were also detected at the transcript level by publicly available RNA-Seq data and experimentally validated by RT-qPCR. Additionally, PKM1 and STXBP1a were detected at higher abundances in a publicly available MS/MS dataset of the AD mouse model APP/PS1 than its wild type. These data corroborate other reports, which suggest that PKM1 and STXBP1a AS proteoforms might play a role in amyloid-like aggregate formation. To the best of our knowledge, this report is the first to describe PKM1 and STXBP1a overexpression in the OB of an AD mouse model. We hope that our strategy may be of use in future human neurodegenerative studies using mouse models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.