Neuregulin/ErbB signaling maintains high efficacy of synaptic transmission by stabilizing the postsynaptic apparatus via phosphorylation of α-dystrobrevin1.
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca 2+ stored in the sarcoplasmic reticulum by a process called excitation-contraction coupling. Excitation-contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation-contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca 2+ release channel, and Ca 2+ storage protein, respectively. Nevertheless, a number of additional proteins have been shown to be essential both for the structural formation of the machinery involved in excitation-contraction coupling and for its fine tuning. In this review we discuss the functional role of minor sarcoplasmic reticulum protein components. The definition of their roles in excitation-contraction coupling is important in order to understand how mutations in genes involved in Ca 2+ signalling cause neuromuscular disorders.
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.
In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35-EYFP (enhanced yellow fluorescent protein) causes a decrease of the maximal Ca²⁺ released via RyR (ryanodine receptor) activation induced by KCl or 4-chloro-m-chresol. The latter result could be mimicked by the addition of retinoic acid to the C2C12 cell tissue culture medium, a treatment which caused a significant reduction of RyR1 expression. We propose that in skeletal muscle SRP-35 is involved in the generation of all-trans-retinaldehyde and may play an important role in the generation of intracellular signals linking Ca2+ release (i.e. muscle activity) to metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.