The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.
Neurovascular dysfunction substantially contributes to Alzheimer disease. Here, we show that transcriptional profiling of human brain endothelial cells (BECs) defines a subset of genes whose expression is age-independent but is considerably altered in Alzheimer disease, including the homeobox gene MEOX2 (also known as GAX), a regulator of vascular differentiation, whose expression is low in Alzheimer disease. By using viral-mediated MEOX2 gene silencing and transfer, we show that restoring expression of the protein it encodes, GAX, in BECs from individuals with Alzheimer disease stimulates angiogenesis, transcriptionally suppresses AFX1 forkhead transcription factor-mediated apoptosis and increases the levels of a major amyloid-beta peptide (Abeta) clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP), at the blood-brain barrier. In mice, deletion of Meox2 (also known as Gax) results in reductions in brain capillary density and resting cerebral blood flow, loss of the angiogenic response to hypoxia in the brain and an impaired Abeta efflux from brain caused by reduced LRP levels. The link of MEOX2 to neurovascular dysfunction in Alzheimer disease provides new mechanistic and therapeutic insights into this illness.
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems—hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
A combined forward and reverse genetic approach was undertaken to test the candidacy of IRAK1 (interleukin-1 receptor associated kinase-1) as an X chromosome-encoded risk factor for systemic lupus erythematosus (SLE). In studying Ϸ5,000 subjects and healthy controls, 5 SNPs spanning the IRAK1 gene showed disease association (P values reaching 10 ؊10 , odds ratio >1.5) in both adult-and childhoodonset SLE, in 4 different ethnic groups, with a 4 SNP haplotype (GGGG) being strongly associated with the disease. The functional role of IRAK1 was next examined by using congenic mouse models bearing the disease loci: Sle1 or Sle3. IRAK1 deficiency abrogated all lupusassociated phenotypes, including IgM and IgG autoantibodies, lymphocytic activation, and renal disease in both models. In addition, the absence of IRAK1 reversed the dendritic cell ''hyperactivity'' associated with Sle3. Collectively, the forward genetic studies in human SLE and the mechanistic studies in mouse models establish IRAK1 as a disease gene in lupus, capable of modulating at least 2 key checkpoints in disease development. This demonstration of an X chromosome gene as a disease susceptibility factor in human SLE raises the possibility that the gender difference in SLE may in part be attributed to sex chromosome genes.autoimmune disease ͉ genetic association ͉ SNP ͉ inflammation ͉ interferon
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.