Analysis of the signaling response of colon cancer cells to systematic perturbations reveals an EGF receptor-mediated cross-talk between the MAPK and AKT pathways. Accordingly, the predicted combinatorial treatment is shown to inhibit tumor growth in vivo.
This study shows that MAPK signalling is robust against protein level changes due to a strong negative feedback from Erk to Raf. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days.
The RAF‐MEK‐ERK signalling pathway controls fundamental, often opposing cellular processes such as proliferation and apoptosis. Signal duration has been identified to play a decisive role in these cell fate decisions. However, it remains unclear how the different early and late responding gene expression modules can discriminate short and long signals. We obtained both protein phosphorylation and gene expression time course data from HEK293 cells carrying an inducible construct of the proto‐oncogene RAF. By mathematical modelling, we identified a new gene expression module of immediate–late genes (ILGs) distinct in gene expression dynamics and function. We find that mRNA longevity enables these ILGs to respond late and thus translate ERK signal duration into response amplitude. Despite their late response, their GC‐rich promoter structure suggested and metabolic labelling with 4SU confirmed that transcription of ILGs is induced immediately. A comparative analysis shows that the principle of duration decoding is conserved in PC12 cells and MCF7 cells, two paradigm cell systems for ERK signal duration. Altogether, our findings suggest that ILGs function as a gene expression module to decode ERK signal duration.
SummaryVPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.