We show that the equivalence of deterministic linear top-down treeto-word transducers is decidable in polynomial time. Linear tree-to-word transducers are non-copying but not necessarily order-preserving and can be used to express XML and other document transformations. The result is based on a partial normal form that provides a basic characterization of the languages produced by linear tree-to-word transducers.
We present two structural results concerning the longest common prefixes of non-empty languages. First, we show that the longest common prefix of the language generated by a context-free grammar of size N equals the longest common prefix of the same grammar where the heights of the derivation trees are bounded by 4N . Second, we show that each non-empty language L has a representative subset of at most three elements which behaves like L w.r.t. the longest common prefix as well as w.r.t. longest common prefixes of L after unions or concatenations with arbitrary other languages. From that, we conclude that the longest common prefix, and thus the longest common suffix, of a context-free language can be computed in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.