The tomato (Solanum lycopersicum Linnaeus) is one of the most important vegetable crops in the world. Still, there are phytopathogenic bacteria that cause a decrease in the yield or can kill the plant, like Pseudomonas syringae pv. tomato (Pst), Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), Ralstonia solanacearum (Rs ) and Agrobacterium tumefeciens (At). Synthetic chemical fungicides are primarily used to control plant pathogenic bacteria, but their rapid growth makes them resistant to control. This research work is aimed at assessing the in vitro antibacterial activity of the ethanolic extract of Magnolia tamaulipana Vazquez leaves against Rs, Pst, Xv, Cmm, and At, as well as obtaining information about this plant species' chemical composition. The extract inhibited the growth of the five phytopathogenic bacteria that were tested. The growth inhibition rate ranged between 8.22 and 100%. The inhibitory concentration, IC<sub>50(90)</sub>, required to inhibit 50 (90%) of Pst, Xv, Cmm, and At bacterial growth, was 34.71 (39.62), 23.09 (441.88), 64.75 (176.73) and 97.72 (535.48) ppm, respectively. The phytochemical analysis detected the presence of phenols, tannins, terpenes, saponins. M. tamaulipana ethanolic extract has antimicrobial properties and it must be considered a new control agent.
The Tetranychidae family includes mites causing severe damage to agricultural fields. The red spider mite, Tetranychus merganser Boudreaux (Acari: Tetranychidae), causes severe damage to several plant species grown as cash crops. Current red spider mite control depends mainly on chemical insecticides. There is a need for alternate control measures that are environmentally friendlier than chemical pesticides. The aim of the study was to assess the effects of Moringa oleifera leaf ethanolic extract at different concentrations (0.1, 0.5, 1, 5, 10, 15, and 20% (v/v)) against T. merganser females. Such effects can serve as a basis to include this compound in integrated pest management programs for the control of red spider mites. Mites treated with 20% (v/v) killed 86.67%, 13.70%, and 96.30% at 24, 48, and 72 h, respectively, as compared to the control treatment. Oviposition, egg hatching, and the damage caused by red spider mites were all reduced at high concentrations. Moringa oleifera leaf ethanolic extract can be used as a powerful bioacaricide for the control of T. merganser.
At least 59 maize races (Zea mays L.) have been registered in Mexico. The feeding damage caused by insects and mites to maize crops generates up to ~30% of maize yield losses. Spider-mite-resistant plants are needed. The red spider mite, Tetranychus merganser Boudreaux (Acari: Tetranychidae), is distributed in the United States, China, Mexico, and Thailand. It is considered a potential pest in Mexican agriculture. The aim of this study was to evaluate the resistance mechanisms (antixenosis and antibiosis) of 11 native maize populations, representative of each race of maize grown in Tamaulipas, Mexico, to T. merganser under laboratory conditions. The aim was also to obtain information on the chemical composition and some morphological characteristics of these maize races and to identify resistant maize races for incorporation into a breeding program. Antixenosis was assessed by non-preference for oviposition and feeding. Antibiosis was measured by growth rate (ri). The presence of secondary metabolites in the 11 maize races were different. In the 11 maize races, quantitative analysis of total phenol concentration, total flavonoid concentration, and antioxidant capacity were significantly different. The multivariate analysis of variance showed that there is evidence of antixenosis noted by maize race differences in egg laying and percentage feeding damage but not of antibiosis noted by growth rate. Red spider mites laid significantly more eggs on the Celaya (24 h: 25.67 ± 17.04, 48 h: 42.67 ± 26.86, 72 h: 49.33 ± 28.54) race than on Raton (24 h: 7.00 ± 5.00, 48 h: 12.67 ± 8.02, 72 h: 14.67 ± 9.29) and Elotes Occidentales × Tuxpeño (24 h: 9.67 ± 5.85, 48 h: 15.33 ± 10.69, 72 h: 17.67 ± 10.97) races. However, the growth rate and mortality of T. merganser in the 11 corn races were similar. The Vandeño (24 h: 11.67 ± 2.89, 48 h: 27.67 ± 7.64, 72 h: 30.00 ± 18.03) and Tabloncillo × Tuxpeño (24 h: 18.33 ± 7.64, 48 h: 25.00 ± 8.66, 72 h: 25.00 ± 8.66) races were the most resistant to red spider mite damage, whereas the most susceptible race was Celaya (24 h: 26.67 ± 15.28, 48 h: 48.33 ± 29.30, 72 h: 65.00 ± 30.00). Further analysis by PCA at 24, 48, and 72 h found the Celaya race positively correlated to growth rate and oviposition of T. merganser and to a lesser extent with the percentage of feeding damage, suggesting that the Celaya race was most susceptible to T. merganser. At 24 h, the Vandeño race was most resistant, given a negative correlation to growth rate and oviposition by T. merganser. The PCA at 48 and 72 h noted the Elotes Occidentales × Tuxpeño race was most resistant to red spider mite, with negative relationships to growth rate and oviposition and, to a lesser extent, to feeding damage. This resistance is due to the differences in both its morphological characteristics and the secondary metabolites present in their leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.