What determines where synapses will form along an axon or how proteins are deposited at nascent synapses remains unknown. Here, we show that the initial formation of presynaptic terminals occurs preferentially at predefined sites within the axons of cortical neurons. Time-lapse imaging of synaptic vesicle protein transport vesicles (STVs) indicates that STVs pause repeatedly at these sites, even in the absence of neuronal or glial contact. Contact with a neuroligin-expressing non-neuronal cell induces formation of presynaptic terminals specifically at these STV pause sites. Remarkably, formation of stable contacts with dendritic filopodia also occurs selectively at STV pause sites. Although it is not yet known which molecules comprise the predefined sites, STV pausing is regulated by cues that affect synaptogenesis. Overall, these data are consistent with the hypothesis that regulation of STV pausing might be an important mechanism for accumulation of presynaptic proteins at nascent synapses and support a new model in which many en passant synapses form specifically at predefined sites in young axons.
Although brain-derived neurotrophic factor (BDNF) potently regulates neuronal connectivity in the developing CNS, the mechanism by which BDNF influences the formation and/or maintenance of glutamatergic synapses remains unknown. Details about the subcellular localization of the BDNF receptor, TrkB, relative to synaptic and nonsynaptic proteins on excitatory neurons should provide insight into how BDNF might exert its effects during synapse formation. Here, we investigated the subcellular localization of tyrosine kinase receptor B (TrkB) relative to synaptic vesicle-associated proteins and NMDA receptors using immunocytochemistry, confocal microscopy, and time-lapse imaging in dissociated cultures of cortical neurons before, during, and after the peak of synapse formation. We find that TrkB is present in puncta on the surface and intracellularly in both dendrites and axons throughout development. Before synapse formation, some TrkB puncta in dendrites colocalize with NMDA receptors, and almost all TrkB puncta in axons colocalize with synaptic vesicle proteins. Clusters of TrkB fused to the enhanced green fluorescent protein (TrkB-EGFP) are highly mobile in both axons and dendrites. In axons, TrkB-EGFP dynamics are almost identical to vesicle-associated protein (VAMP2-EGFP), and these proteins are often transported together. Finally, surface TrkB is found in structures that actively participate in synapse formation: axonal growth cones and dendritic filopodia. Over time, surface TrkB becomes enriched at glutamatergic synapses, which contain both catalytic and truncated TrkB. These results suggest that TrkB is in the right place at the right time to play a direct role in the formation of glutamatergic synapses between cortical neurons.
Imagine yourself having a conversation with a friend, and he starts yawning. You think, "My friend is getting bored!" Immediately, you try to be more enthusiastic or … you shorten the conversation. Now imagine a bird in the wild that suddenly hears an alarm call from another bird. What does he do? Most likely, his reaction will be to quickly escape to a safe place. These types of situations, where one animal (including humans) uses the behavior of others to guide his or her own behavior, are constantly happening in our daily lives. Importantly, these behaviors provide a number of advantages that are crucial for survival, like protection against threats. But how do the defense behaviors displayed by one individual who directly detects a threat influence the defense behaviors of others who are unaware of it? And what kind of signals are being used? This is exactly what we are tackling here! And we found out that an important cue is … silence!
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.