Gene duplication is a key source of genetic innovation that plays a role in the evolution of phenotypic complexity. Although several evolutionary processes can result in the long-term retention of duplicate genes, their relative contributions in nature are unknown. Here we develop a phylogenetic approach for comparing genome-wide expression profiles of closely related species to quantify the roles of conservation, neofunctionalization, subfunctionalization, and specialization in the preservation of duplicate genes. Application of our method to pairs of young duplicates in Drosophila shows that neofunctionalization, the gain of a novel function in one copy, accounts for the retention of almost twothirds of duplicate genes. Surprisingly, novel functions nearly always originate in younger (child) copies, whereas older (parent) copies possess functions similar to those of ancestral genes. Further examination of such pairs reveals a strong bias toward RNAmediated duplication events, implicating asymmetric duplication and positive selection in the evolution of new functions. Moreover, we show that young duplicate genes are expressed primarily in testes and that their expression breadth increases over evolutionary time. This finding supports the "out-of-testes" hypothesis, which posits that testes are a catalyst for the emergence of new genes that ultimately evolve functions in other tissues. Thus, our study highlights the importance of neofunctionalization and positive selection in the retention of young duplicates in Drosophila and illustrates how duplicates become incorporated into novel functional networks over evolutionary time.G ene duplication produces two copies of an existing gene.Evolutionary theory predicts that functional redundancy of duplicate genes causes one copy to undergo a brief period of relaxed selection after duplication (1). In nearly all cases, this should result in an accumulation of deleterious mutations and pseudogenization of the copy within a few million years (2). However, most sequenced eukaryotic genomes contain many functional duplicates, some of which are hundreds of millions of years old (3-8), suggesting that duplicate genes play important roles in evolution.Four processes can result in the evolutionary preservation of duplicate genes: conservation, neofunctionalization, subfunctionalization, and specialization. Under conservation, ancestral functions are maintained in both copies, likely because increased gene dosage is beneficial (1). Under neofunctionalization, one copy retains its ancestral functions, and the other acquires a novel function (1). Under subfunctionalization, mutations damage different functions of each copy, such that both copies are required to preserve all ancestral gene functions (9, 10). Finally, under specialization, subfunctionalization and neofunctionalization act in concert, producing two copies that are functionally distinct from each other and from the ancestral gene (11). Theoretical work has shown that different conditions can result in the retention of...
Sex-biased genes are thought to drive phenotypic differences between males and females. The recent availability of high-throughput gene expression data for many related species has led to a burst of investigations into the genomic and evolutionary properties of sex-biased genes. In Drosophila, a number of studies have found that X chromosomes are deficient in male-biased genes (demasculinized) and enriched for female-biased genes (feminized) and that male-biased genes evolve faster than female-biased genes. However, studies have yielded vastly different conclusions regarding the numbers of sex-biased genes and forces shaping their evolution. Here, we use RNA-seq data from multiple tissues of Drosophila melanogaster and D. pseudoobscura, a species with a recently evolved X chromosome, to explore the evolution of sex-biased genes in Drosophila. First, we compare several independent metrics for classifying sex-biased genes and find that the overlap of genes identified by different metrics is small, particularly for female-biased genes. Second, we investigate genome-wide expression patterns and uncover evidence of demasculinization and feminization of both ancestral and new X chromosomes, demonstrating that gene content on sex chromosomes evolves rapidly. Third, we examine the evolutionary rates of sex-biased genes and show that male-biased genes evolve much faster than female-biased genes, which evolve at similar rates to unbiased genes. Analysis of gene expression among tissues reveals that this trend may be partially due to pleiotropic effects of female-biased genes, which limits their evolutionary potential. Thus, our findings illustrate the importance of accurately identifying sex-biased genes and provide insight into their evolutionary dynamics in Drosophila.
BackgroundGene duplication provides raw material for the evolution of functional innovation. We recently developed a phylogenetic method that classifies evolutionary processes driving the retention of duplicate genes by quantifying divergence between their spatial gene expression profiles and that of their single-copy orthologous gene in a closely related sister species.ResultsHere, we apply our classification method to pairs of duplicate genes in eight mammalian genomes, using data from 11 tissues to construct spatial gene expression profiles. We find that young mammalian duplicates are often functionally conserved, and that expression divergence rapidly increases over evolutionary time. Moreover, expression divergence results in increased tissue specificity, with an overrepresentation of expression in male kidney, underrepresentation of expression in female liver, and strong underrepresentation of expression in testis. Thus, duplicate genes acquire a diversity of new tissue-specific functions outside of the testis, possibly contributing to the origin of a multitude of complex phenotypes during mammalian evolution.ConclusionsOur findings reveal that mammalian duplicate genes are initially functionally conserved, and then undergo rapid functional divergence over evolutionary time, acquiring diverse tissue-specific biological roles. These observations are in stark contrast to the much faster expression divergence and acquisition of broad housekeeping roles we previously observed in Drosophila duplicate genes. Due to the smaller effective population sizes of mammals relative to Drosophila, these analyses implicate natural selection in the functional evolution of duplicate genes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0426-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.