The current research focuses on the adsorption/desorption characteristics of the antibiotics ciprofloxacin (CIP) and trimethoprim (TRI) taking place in 17 agricultural soils, which are studied by means of batch-type experiments. The results show that adsorption was higher for CIP, with Freundlich KF values ranging between 1150 and 5086 Ln µmol1−n kg−1, while they were between 29 and 110 Ln µmol1−n kg−1 in the case of TRI. Other parameters, such as the Langmuir maximum adsorption capacity (qm(ads)), as well as the Kd parameter in the linear model and also the adsorption percentages, follow the same trend as KF. Desorption was lower for CIP (with KF(des) values in the range 1089–6234 Ln µmol1−n kg−1) than for TRI (with KF(des) ranging between 26 and 138 Ln µmol1−n kg−1). The higher irreversibility of CIP adsorption was also confirmed by its lower nF(des)/nF(ads) ratios, compared to TRI. Regarding soil characteristics, it was evidenced that nitrogen and carbon contents, as well as mineral fractions, had the highest influence on the adsorption/desorption process. These results can be considered relevant as regards the fate of both antibiotics when they reach the environment as pollutants and therefore could be considered in assessment procedures focused on environmental and public health aspects.
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.
In view of the rising relevance of emerging pollutants in the environment, this work studies the photodegradation of three antibiotics, evaluating the effects of the pH of the medium and the concentration of dissolved organic matter. Simulated light (with a spectrum similar to that of natural sunlight) was applied to the antibiotics Ciprofloxacin (Cip), Clarithromycin (Cla) and Trimethoprim (Tri), at three different pH, and in the presence of different concentrations of humic acids. The sensitivity to light followed the sequence: Cip > Cla > Tri, which was inverse for the half-life (Tri > Cla > Cip). As the pH increased, the half-life generally decreased, except for Cla. Regarding the kinetic constant k, in the case of Cip and Tri it increased with the rise of pH, while decreased for Cla. The results corresponding to total organic carbon (TOC) indicate that the complete mineralization of the antibiotics was not achieved. The effect of humic acids was not marked, slightly increasing the degradation of Cip, and slightly decreasing it for Tri, while no effect was detected for Cla. These results may be relevant in terms of understanding the evolution of these antibiotics, especially when they reach different environmental compartments and receive sunlight radiation.
The huge worldwide use of antibiotics triggers the accumulation of these substances in sludge from wastewater treatment plants (WWTP) and the possible contamination of soils amended with it, as well as of crops growing in these soils. In this work we analyzed the presence of the antibiotics amoxicillin (AMO), cefuroxime (CEF), ciprofloxacin (CIP), clarithromycin (CLA), levofloxacin (LEV), lincomycin (LIN), norfloxacin (NOR), sulfadiazine (SUL), and trimethoprim (TRI), in sludge from different WWTPs in Galicia (NW Spain), as well as in sludge technically treated by waste-managers, in soils where treated sludge was applied, and in crops (corn and vineyard) growing in the amended areas. The antibiotics were quantified by means of high resolution HPLC-mass-chromatography. The results indicate that almost all the sludge samples contained antibiotics, being ciprofloxacin and levofloxacin the most abundant reaching maximum values of 623 and 893 ng/g, respectively. The sludge treatment significantly reduced the number and the concentrations of antibiotics. In 12% of the soil samples where sludge was applied, some antibiotics were detected, but always in small concentrations. Regarding the crops, no antibiotic was detected in the roots, stalk, leaves and grain of corn, neither in grapes sampled in vineyards. It can be concluded that the treatments currently applied in the WWTPs under study are not totally effective in removing antibiotics from the sludge, although the findings of this research suggest that the additional specific treatment of the sludge derived from these WWTPs is effective in reducing the risk of environmental pollution due to a variety of antibiotics, and specifically in the case of soils amended with these organic materials and crops growing on it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.