Pituitary hormones have long been thought solely to regulate single targets. Challenging this paradigm, we discovered that both anterior and posterior pituitary hormones, including FSH, had other functions in physiology. We have shown that FSH regulates skeletal integrity, and, more recently, find that the inhibition of FSH reduces body fat and induces thermogenic adipose tissue. A polyclonal antibody raised against a short, receptor-binding epitope of FSHβ was found not only to rescue bone loss post-ovariectomy, but also to display marked anti-obesity and pro-beiging actions. Questioning whether a single agent could be used to treat two medical conditions of public health importance -osteoporosis and obesity -we developed two further monoclonal antibodies, Hf2 and Mf4, against computationally defined receptor-binding epitopes of FSHβ. Hf2 has already been shown to reduce body weight, fat mass and cause beiging in mice on a high-fat diet. Here, we show that Hf2, which binds mouse Fsh in immunoprecipitation assays, also increases cortical thickness and trabecular bone volume, and microstructural parameters, in sham-operated and ovariectomized mice, noted on micro-computed tomography.This effect was largely recapitulated with Mf4, which inhibited bone resorption by osteoclasts and stimulated new bone formation by osteoblasts. These effects were exerted in the absence of alterations in serum estrogen in wild type mice. We also re-confirm the existence of Fshrs in bone by documenting the specific binding of fluorescently labeled FSH, FSH-CH, in vivo. Our study provides the framework for the future development of an FSH-based therapeutic that could potentially target both bone and fat. 3 SIGNIFICANCE STATEMENTWe have addressed the question whether osteoporosis and obesity, which often occur concurrently in postmenopausal women, can be targeted by a single agent. We have shown previously that the reproductive hormone FSH, the levels of which rise after menopause, regulates both body fat and bone mass. We now show that blocking FSH action using two purposefully designed epitope-specific antibodies protects against bone loss in mice. This positions both FSH antibodies as lead molecules for clinical development towards future use in people.
Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.steroid hormones | missense mutations | classic CAH | ambiguous genitalia C ongenital adrenal hyperplasia (CAH) is a Mendelian disorder transmitted as an autosomal recessive trait. The most prevalent form of CAH arises from steroid 21-hydroxylase enzyme deficiency, accounting for ∼90-95% of all cases (1, 2). In contrast, CAH caused by steroid 11β-hydroxylase deficiency is considerably rare, with a prevalence of 5-8% (3), from which we estimate an overall frequency of 1 in 100,000 live births.Two homologous enzymes, 11β-hydroxylase and aldosterone synthase, are encoded by the CYP11B1 and CYP11B2 genes, respectively. The two genes are 40-kb apart, each comprising nine exons and mapped to chromosome 8q21-22 (3, 4) (Fig. 1A). In contrast to CYP21A2 and its CYP21A1P pseudogene, CYP11B1 and CYP11B2 are both active and do not have a pseudogene. The two encoded homologs, however, have distinct functions in cortisol and aldosterone synthesis, respectively (3). In the zona fasciculata, 11β-hydroxylase converts 11-deoxycortisol and 11-deoxycorticosterone to cortisol and corticosterone, respectively, and is regulated by adrenocorticotropic hormone secreted by the pituitary. In contrast, in the zona glomerulosa aldosterone synthase converts corticosterone to aldosterone with the intermediate production of 18-hydroxycorticosterone. These latter conversions are controlled mainly by the renin angiotensin II system and serum potassium concentration (3).Deficiency of 11β-hydroxylase prevents the conversion of 11-deoxycortisol to cortisol and 11-deoxycorticosterone to corticosterone. This results in high levels of 11-deoxycortisol and 11-deoxycorticosterone, respectively, which are shunted into the androgen synthesis pathway, resulting in high levels of the androgenic steroid, androstenedione. Female newborns are thus profoundly virilized and exhibit significant masculinization of the ex...
The lysosomal enzyme glucocerebrosidase-1 (GCase) catalyzes the cleavage of a major glycolipid glucosylceramide into glucose and ceramide. The absence of fully functional GCase leads to the accumulation of its lipid substrates in lysosomes, causing Gaucher disease, an autosomal recessive disorder that displays profound genotype–phenotype nonconcordance. More than 250 disease-causing mutations in GBA1, the gene encoding GCase, have been discovered, although only one of these, N370S, causes 70% of disease. Here, we have used a knowledge-based docking protocol that considers experimental data of protein–protein binding to generate a complex between GCase and its known facilitator protein saposin C (SAPC). Multiscale molecular-dynamics simulations were used to study lipid self-assembly, membrane insertion, and the dynamics of the interactions between different components of the complex. Deep learning was applied to propose a model that explains the mechanism of GCase activation, which requires SAPC. Notably, we find that conformational changes in the loops at the entrance of the substrate-binding site are stabilized by direct interactions with SAPC and that the loss of such interactions induced by N370S and another common mutation, L444P, result in destabilization of the complex and reduced GCase activation. Our findings provide an atomistic-level explanation for GCase activation and the precise mechanism through which N370S and L444P cause Gaucher disease.
A facil synthesis of benzophenanthridinium salts has been developed and used for preparing a number of these compounds. The antitumor activities in mouse leukemia L1210 (LE) and P388 (PS) were determined as well as some selected antimicrobial activities. Although antitumor activity was exhibited by several of the derivatives, none was as active as the naturally occurring alkaloid fagaronine. Fagaronine was made available as a synthetic by an improved procedure. Some structure-activity relationships among antitumor benzophenanthridinium salts are discussed.
Despite the improved accuracy of next-generation sequencing (NGS), it is widely accepted that variants need to be validated using Sanger sequencing before reporting. Validation of all NGS variants considerably increases the turnaround time and costs of clinical diagnosis. We comprehensively assessed this need in 1109 variants from 825 clinical exomes, the largest sample set to date assessed using Illumina chemistry reported. With a concordance of 100%, we conclude that Sanger sequencing can be very useful as an internal quality control, but not so much as a verification method for high-quality single-nucleotide and small insertion/deletions variants. Laboratories might validate and establish their own thresholds before discontinuing Sanger confirmation studies. We also expand and validate 23 copy number variations detected by exome sequencing in 20 samples, observing a concordance of 95.65% (22/23).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.