In the specific context of condensed media, the significant and increasing recent interest in the α-cyanostilbene (CS) motif [ArCHC(CN)Ar] is relevant. These compounds have shown remarkable optical features in addition to interesting electrical properties, and hence they are recognized as very suitable and versatile options for the development of functional materials. This progress report is focused on current and future use of CS structures and molecular assemblies with the aim of exploring and developing for the next generations of functional materials. A critical selection of illustrative materials that contain the CS motif, including relevant subfamilies such as the dicyanodistyrylbenzene and 2,3,3-triphenylacrylonitrile shows how, driven by the self-assembly of CS blocks, a variety of properties, effects, and possibilities for practical applications can be offered to the scientific community, through different rational routes for the elaboration of advanced materials. A survey is provided on the research efforts directed toward promoting the self-assembly of the solid state (polycrystalline solids, thin films, and single crystals), liquid crystals, nanostructures, and gels with multistimuli responsiveness, and applications for sensors, organic light-emitting diodes, organic field effect transistors, organic lasers, solar cells, or bioimaging purposes.
A new series of liquid crystalline poly(amidoamine) (PAMAM) dendrimers is described. These dendrimers are made by attaching to the 0-, 1-, 2-, 3-, and 4-generation of PAMAM-terminal promesogenic units that carry two decyloxy chains in the 3- and 4-positions of their peripheral aromatic ring. X-ray diffraction studies show that all the compounds display a hexagonal columnar mesophase. A high density of aliphatic chains imposes a curved interface with the promesogenic units that forces the molecules to adopt a radial conformation, and therefore, the columnar structure. A model for the supramolecular organization of the different generations within the columnar mesophase is proposed based on the variation of some of the structural parameters.
Novel metallomesogens with luminescent properties and liquid crystalline behavior at room temperature have been achieved by the preparation of zinc complexes with polycatenar pyrazole and bis(pyrazolyl)methane ligands. Their molecular structures do not have a conventional shape in that they are far from the typical rod-like and flat disc-like geometries of common liquid crystals. They consist of a nonplanar nucleus due to the methylene spacer and/or the coordination to the tetrahedral center, as confirmed by single crystal analysis of the cores. The different numbers and positions of side chains in the pyrazole ligand enabled us to access lamellar and columnar mesophases and, of particular interest, to obtain columnar arrangements at room temperature. Supramolecular models for the organization of the molecules in the mesophases are proposed on the basis of the small-angle XRD diffractograms. The zinc complexes display luminescence in the near UV-blue region with large Stokes shifts. An interplay between non-conventional molecular shapes (due to the tetrahedral core) and the supramolecular mesomorphic order (due to the ligand design) led to materials that interestingly embody two rather opposite properties, a columnar self-organizational ability and luminescence with weak intermolecular interactions.
In this study, antioxidant compounds (ascorbic acid; total phenolic, flavonoid and anthocyanin contents; and relative antioxidant capacity) and the profiles of sugars, organic acids, polyphenols and mineral composition were compared in the peel and pulp tissues of nine commercial peach cultivars. The antioxidant compounds, measured by a 96-well-microplate-reader, showed differences among cultivars. The phenolic profile determined by UPLC resulted in the quantification of hydroxycinnamates, flavonols (only in peel), flavanols and anthocyanins, which were differently distributed in both tissues. Peels contained the highest phytochemical composition, with the exception of sugars and organic acids. We found that the contents of flavonoids, anthocyanins and total phenolic compounds measured by spectrophotometry and UPLC-MS methodologies were highly correlated. The Spanish cultivar Calanda Tardio showed the highest antioxidant and sorbitol contents. Venus had the highest contents of ascorbic and citric acids, and Big Top had the highest sucrose content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.