Antimicrobial resistance is increasing despite new treatments being employed. With a decrease in the discovery rate of novel antibiotics, this threatens to take humankind back to a “pre-antibiotic era” of clinical care. Bacteriophages (phages) are one of the most promising alternatives to antibiotics for clinical use. Although more than a century of mostly ad-hoc phage therapy has involved substantial clinical experimentation, a lack of both regulatory guidance standards and effective execution of clinical trials has meant that therapy for infectious bacterial diseases has yet to be widely adopted. However, several recent case studies and clinical trials show promise in addressing these concerns. With the antibiotic resistance crisis and urgent search for alternative clinical treatments for bacterial infections, phage therapy may soon fulfill its long-held promise. This review reports on the applications of phage therapy for various infectious diseases, phage pharmacology, immunological responses to phages, legal concerns, and the potential benefits and disadvantages of this novel treatment.
Diocleinae lectins are highly homologous in their primary structure which features metal binding sites and a carbohydrate recognition domain (CRD). Differences in the biological activity of legume lectins have been widely investigated using hemagglutination inhibition assays, isothermal titration microcalorimetry and co-crystallization with mono- and oligosaccharides. Here we report a new lectin crystal structure (ConBr) extracted from seeds of Canavalia brasiliensis, predict dimannoside binding by docking, identify the α-aminobutyric acid (Abu) binding pocket and compare the CRD of ConBr to that of homologous lectins. Based on the hypothesis that the carbohydrate affinity of lectins depends on CRD configuration, the relationship between tridimensional structure and endothelial NO synthase activation was used to clarify differences in biological activity. Our study established a correlation between the position of CRD amino acid side chains and the stimulation of NO release from endothelium.
The effects of a lectin (AaL) from seeds of Araucaria angustifolia were investigated in the model of rat paw edema. In vivo anti-and pro-inflammatory activities, role of sugar residues, inflammatory mediators and systemic toxicity were assessed. Intravenous injection of AaL (0.1-1 mg/kg) dose-dependently inhibited the dextran-induced increase in edema and vascular permeability, which were prevented by association of the lectin with its binding sugar N-acetyl-glucosamine (Glyc-Nac). AaL also significantly inhibited edema induced by serotonin (18%) and compound 48/80 (33%), but not edema induced by histamine. In contrast, when applied by the s.c. route, AaL evoked a paw edema that peaked 1 h later and was partially prevented by association with Glyc-Nac (59%) or by prior i.v. administration of the lectin itself (38.8%). This AaL edematogenic activity was significantly inhibited by pentoxifylline (44.4%) or dexamethasone (51%) and also by depletion of rat paw mast cells (45.6%), but not by L-N-nitro-arginine methyl ester or indomethacin, excluding involvement of nitric oxide and prostaglandins. Treatment of animals with a single anti-inflammatory dose of AaL (1 mg/kg, i.v.) for 7 days did not affect rat corporal mass, liver, kidney, spleen or stomach wet weight, blood leukocyte count, and urea, creatinine or serum transaminase activity. Systemic toxicity was apparent only at much higher doses (LD50=88.3 mg/kg) than those required for the anti-inflammatory effect. Summarizing, AaL exerts anti-and pro-edematogenic actions via interaction with its specific lectin domain. These actions may share a common pathway involving either activation or inhibition of inflammatory mediators from resident mast cells.
Legume lectins, despite high sequence homology, express diverse biological activities that vary in potency and efficacy. In studies reported here, the mannose-specific lectin from Cymbosema roseum (CRLI), which binds N-glycoproteins, shows both pro-inflammatory effects when administered by local injection and anti-inflammatory effects when by systemic injection. Protein sequencing was obtained by Tandem Mass Spectrometry and the crystal structure was solved by X-ray crystallography using a Synchrotron radiation source. Molecular replacement and refinement were performed using CCP4 and the carbohydrate binding properties were described by affinity assays and computational docking. Biological assays were performed in order to evaluate the lectin edematogenic activity. The crystal structure of CRLI was established to a 1.8Å resolution in order to determine a structural basis for these differing activities. The structure of CRLI is closely homologous to those of other legume lectins at the monomer level and assembles into tetramers as do many of its homologues. The CRLI carbohydrate binding site was predicted by docking with a specific inhibitory trisaccharide. CRLI possesses a hydrophobic pocket for the binding of α-aminobutyric acid and that pocket is occupied in this structure as are the binding sites for calcium and manganese cations characteristic of legume lectins. CRLI route-dependent effects for acute inflammation are related to its carbohydrate binding domain (due to inhibition caused by the presence of α-methyl-mannoside), and are based on comparative analysis with ConA crystal structure. This may be due to carbohydrate binding site design, which differs at Tyr12 and Glu205 position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.