There are 80 spikes on the surface of Sindbis virus arranged as an icosahedral surface lattice. Each spike consists of three copies of each of the glycoproteins E1 and E2. There are two glycosylation sites on E1 and two on E2. These four sites have been located by removal of the glycosylation recognition motifs using site-specific mutagenesis, followed by cryoelectron microscopy. The positions of these sites have demonstrated that E2 forms the protruding spikes and that E1 must be long and narrow, lying flat on the viral surface, forming an icosahedral scaffold analogous to the arrangement of the E glycoprotein in flaviviruses. This arrangement of E1 leads to both dimeric and trimeric intermolecular contacts, consistent with the observed structural changes that occur on fusion with host cell membranes, suggesting a similar fusion mechanism for alpha- and flaviviruses.
Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a "pore"-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.