Scarce information exists about the role of lung antigen-presenting cells (APCs) in vivo during pulmonary tuberculosis. As APCs activate cellular immunity, following intratracheal inoculation with virulent Mycobacterium tuberculosis, we assessed in situ lung APC recruitment, distribution, granuloma involvement, morphology and mycobacterial burden by using MHC-CII, CD14, scavenger receptor class A (SRA), the murine dendritic cell (DC)-restricted marker CD11c and Ziehl-Neelsen staining. CD11c(+) DC and CD14(+) cell recruitment into lungs appeared by day 14, continuing until day 60. MHC-CII(+) cells increased since day 7, persisting until day 60. Thus, virulent mycobacteria delays (14-21 days) lung APC recruitment compared to model antigens and nonvirulent bacilli (24-48 h). Regarding granuloma constitution, highly bacillary CD14(+) and SRA(+) cells were centrally located. MHC-CII(+) cells were more peripheral, with less mycobacteria. CD11c(+) cells were heterogeneously distributed within granulomas, with scarce bacilli. When labelling lung suspensions for MHC-CII and classifying cells as macrophages or DC, then staining for Ziehl-Neelsen, a remarkable segregation was found regarding bacillary burden. Most macrophage-like cells contained numerous bacilli, while DC had no or scarce mycobacteria. This implies differential APC contributions in situ during pulmonary tuberculosis regarding mycobacterial uptake, granuloma involvement and perhaps bacillary growth.
Open access to sequence data is a cornerstone of biology and biodiversity research, but has created tension under the United Nations Convention on Biological Diversity (CBD). Policy decisions could compromise research and development, unless a practical multilateral solution is implemented.Here, we lay out a framework for use of digital sequence information (DSI) that enables fair benefit-sharing, ensures open access to sequence data, strengthens biodiversity conservation and sustainable use, and leverages genomics and bioinformatics for international capacity-building. As Parties to the CBD meet again in-person in the coming months to negotiate the Global Biodiversity Framework, they must apply pragmatic, multilateral solutions to DSI that improve rather than impede global biodiversity targets.The ability to decode and digitally archive DNA has revolutionized the life sciences and related fields. Sequence data, referred to as digital sequence information (DSI) in policy
Mycobacterium tuberculosis has the remarkable capacity to survive within the hostile environment of the macrophage, and to resist potent antibacterial molecules such as reactive oxygen species (ROS). Thus, understanding mycobacterial resistance mechanisms against ROS may contribute to the development of new anti-tuberculosis therapies. Here we identified genes involved in such mechanisms by screening a high-density transposon mutant library, and we show that several of them are involved in the intracellular lifestyle of the pathogen. Many of these genes were found to play a part in cell envelope functions, further strengthening the important role of the mycobacterial cell envelope in protection against aggressions such as the ones caused by ROS inside host cells.
SummaryBuruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppresive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-b. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.