Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.
As an essential component of mechano-gated ion channels, critically required for mechanotransduction in mammalian cells, PIEZO2 is known to be characteristically expressed by Merkel cells in human skin. Here, we immunohistochemically investigated the occurrence of Piezo channels in a case series of Merkel cell carcinoma. A panel of antibodies was used to characterize Merkel cells, and to detect PIEZO2 expression. All analyzed tumors displayed PIEZO2 in nearly all cells, showing two patterns of immunostaining: membranous and perinuclear dot-like. PIEZO2 co-localized with cytokeratin 20, chromogranin A, synaptophysin and neurofilament. Moreover, neurofilament immunoreactive structures resembling nerve-Merkel cell contacts were occasionally found. PIEZO2 was also detected in cells of the sweat ducts. The role of PIEZO2 in Merkel cell carcinoma is still unknown, but it could be related with the mechanical regulation of the tumor biology or be a mere vestige of the Merkel cell derivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.