Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.
The Hedgehog signaling pathway regulates embryo patterning and progenitor cell homeostasis in adult tissues, including epidermal appendages. A role for the Hh pathway in mammary biology and breast cancer has also been suggested. The aim of this study was to analyze Hh signaling in the mouse mammary gland through the generation of transgenic mice that express Sonic Hedgehog (Shh) under the control of the mammary-specific WAP promoter (WAP-Shh mice). To identify mammary cells capable of activating the Hh pathway we bred WAP-Shh mice to Ptch1-lacZ knock-in mice, in which the expression of a nuclear-targeted β-galactosidase reporter protein (β-gal) is driven by the endogenous Patched 1 gene regulatory region. After two cycles of induction of transgenic Shh expression, we detected areas of X-gal reactivity. Immunohistochemical analysis showed nuclear β-gal staining in clusters of mammary cells in WAP-Shh/Ptch1-lacZ bitransgenic mice. These were epithelial cells present in a basal location of displastic ducts and alveoli, adjacent to Shh-expressing luminal cells, and overexpressed epithelial basal markers keratin 5, 14 and 17 and transcription factor p63. Absence of smooth muscle actin expression and a cuboidal morphology differentiated Hh-responding cells from flat-shaped mature myoepithelial cells. Groups of cells expressing stem cell markers integrin β3 and keratins 6 and 15 were also detected within Hh-responding areas. In addition, we found that Hh-responding cells in the mammary glands of WAP-Shh/Ptch1-lacZ mice were ciliated and exhibited a low proliferation rate. Our data show the paracrine nature of hedgehog signaling in the epithelial compartment of the mouse mammary gland, where a subset of basal cells that express mammary progenitor cell markers and exhibit primary cilia is expanded in response to secretory epithelium-derived Shh.
BackgroundMultiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs.MethodsWe used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates.ResultsPreventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype.ConclusionsDMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0304-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.