This paper describes first results obtained from the SWIM (Surface Waves Investigation and Monitoring) instrument carried by CFOSAT (China France Oceanography Satellite), which was launched on October 29 th , 2018. SWIM is a Ku-Band radar with a near-nadir scanning beam geometry. It was designed to measure the spectral properties of surface ocean waves. First, the good behavior of the instrument is illustrated. It is then shown that the nadir products (significant wave height, normalized radar cross-section and wind speed) exhibit an accuracy similar to standard altimeter missions, thanks to a new retracking algorithm, which compensates a lower sampling rate compared to standard altimetry missions. The off-nadir beam observations are analyzed in details. The normalized radar cross-section varies with incidence and wind speed as expected from previous studies presented in the literature. We illustrate that, in order to retrieve the wave spectra from the radar backscattering fluctuations, it is crucial to apply a speckle correction derived from the observations. Directional spectra of ocean waves and their mean parameters are then compared to wave model data at the global scale and to in situ data from a selection of case studies. The good efficiency of SWIM to provide the spectral properties of ocean waves in the wavelength range [70m-500m] is illustrated. The main limitations are discussed, and the perspectives to improve data quality are presented. 1
A radar package for asteroid subsurface investigations: Implications of implementing and integration into the MASCOT nanoscale landing platform from science requirements to baseline design,
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Chinese-French oceanography satellite, CFOSAT, was launched on October 2018. Two Ku-band scatterometers are on-board: SCAT for the wind observation and SWIM for the wave observation. After a first phase mainly dedicated to validation and identification of improvement possibilities, the ground processing and products generated were upgraded. This paper presents the main evolutions implemented and their positive impacts on the SWIM data quality.
<p>The Soil Moisture and Ocean Salinity (SMOS) satellite, launched in 2009 by ESA, has provided, for the first time, systematic passive L-band (1.4 GHz) measurements from space with a spatial resolution of ~ 40 km. SMOS data are an essential component of the ESA Climate Change Initiative (CCI) for ocean salinity and soil moisture and they are used by the CCI biomass. A specific SMOS neural network soil moisture product is assimilated operationally at the European Centre for Medium Range Weather Forecasts (ECMWF). L-band surface SM measurements have also been used to estimate root zone soil moisture, to derive drought indices, to enable food security monitoring and to improve satellite precipitation estimates. SMOS data have also been used to detect frozen soils, thin ice-sheets over the ocean and ice melting in Antarctica and Greenland.</p><p>Different studies on scientific and operational applications of L-band radiometry have shown the need of the continuity of L-band observations with an increased resolution with respect to the current generation of sensors. Resolutions from 1 km to 10 km would be a breakthrough for many applications over ocean, land and ice. One approach to obtain those resolutions could be downscaling coarse resolution data using an auxiliary dataset with higher resolution. However, using airborne data, we will show that the accuracy of the data downscaled to 1 km decreases significantly when the initial native resolution is 40 km with respect to downscaling from initial resolutions of 5-10 km. We will present two instrumental concepts to reach native resolutions of 5-10 km.</p><p>The SMOS-HR mission project, completed the Phase 0 study at the French Centre National d&#8217;Etudes Spatiales (CNES) with contributions from Airbus Defence & Space and CESBIO. The goal was to ensure the continuity of L-band measurements while increasing the spatial resolution to ~10 km, which requires a typical antenna size of ~18 meters. Taking into account the difficulty of deploying a real aperture of this size in space and the successful alternative approach used by SMOS, SMOS-HR will perform aperture synthesis using an array of 230 small antennas distributed in a cross with four 12 m arms. During the Phase A study (ongoing at CNES) a mission concept with a central carrier surrounded by a swarm of nanosatellites will also be studied.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.