Toxoplasma gondii is an important zoonotic agent with high genetic diversity, complex epidemiology, and variable clinical outcomes in animals and humans. In veterinary medicine, this apicomplexan parasite is considered one of the main infectious agents responsible for reproductive failure in small ruminants worldwide. The aim of this study was to phenotypically characterize 10 Spanish T. gondii isolates recently obtained from sheep in a normalized mouse model and in an ovine trophoblast cell line (AH-1) as infection target cells. The panel of isolates met selection criteria regarding such parameters as genetic diversity [types II (ToxoDB #1 and #3) and III (#2)], geographical location, and sample of origin (aborted foetal brain tissues or adult sheep myocardium). Evaluations of in vivo mortality, morbidity, parasite burden and histopathology were performed. Important variations between isolates were observed, although all isolates were classified as “nonvirulent” (< 30% cumulative mortality). The isolates TgShSp16 (#3) and TgShSp24 (#2) presented higher degrees of virulence. Significant differences were found in terms of in vitro invasion rates and tachyzoite yield at 72 h post-inoculation (hpi) between TgShSp1 and TgShSp24 isolates, which exhibited the lowest and highest rates, respectively. The study of the CS3, ROP18 and ROP5 loci allelic profiles revealed only type III alleles in ToxoDB #2 isolates and type II alleles in the #1 and #3 isolates included. We concluded that there are relevant intra- and inter-genotype virulence differences in Spanish T. gondii isolates, which could not be inferred by genetic characterization using currently described molecular markers.
The present study aimed to isolate and perform molecular and phenotypic characterization of Toxoplasma gondii strains infecting Iberian pigs bred under semi-free conditions and destined for human consumption. Blood and heart tissue samples from 361 fattening pigs from 10 various herds selected in the main areas of Iberian pig production were collected at a slaughterhouse; the sera were tested for anti-T. gondii antibodies using a commercial indirect ELISA kit, and a mouse bioassay was carried out using heart muscle of seropositive individual representatives from each geographical location. Seventy-nine (21.9%) of the 361 animals tested positive for anti-T. gondii antibodies according to the serology test. Fifteen samples of myocardial tissue were subjected to bioassay and 5 isolates (TgPigSp1 to TgPigSp5) were obtained. The isolates were characterized by using 11 PCR-RFLP genetic markers; three isolates had a ToxoDB #3 genotype (3/5) and two isolates had a ToxoDB #2 genotype (2/5). The TgPigSp1 and TgPigSp4 isolates were selected for virulence in mice characterization as instances of each different RFLP-genotype found. The TgPigSp1 isolate (#2 genotype) was virulent in mice with notable cumulative mortality (87.5%) and morbidity rates (100%); the TgPigSp4 (#3) was nonvirulent and triggered mild clinical signs in 42.1% of seropositive mice. Infection dynamics and organ distribution of both isolates were analyzed; the data revealed significant differences, including substantially higher parasite load in the lung during the acute phase of infection, in mice infected with TgPigSp1 than in the case of TgPigSp4 (median parasite load 7.6 vs. 0 zoites/mg, respectively; p < 0.05). Furthermore, degrees of severity of detected histopathological lesions appeared to be related to higher parasite burdens. Taking into account the unexpectedly high mortality rate and parasite load associated with the clonal genotype III, which is traditionally considered nonvirulent in mice, the need for further investigation and characterization of the T. gondii strains circulating in any host in Europe is emphasized.
BackgroundSheep have been traditionally considered as less susceptible to Mycobacterium bovis (Mbovis) infection than other domestic ruminants such as cattle and goats. However, there is increasing evidence for the role of this species as a domestic Mbovis reservoir, mostly when sheep share grazing fields with infected cattle and goats. Nevertheless, there is a lack of information about the pathogenesis and the immune response of Mbovis infection in sheep. The goals of this study were to characterize the granuloma stages produced by the natural infection of Mbovis in sheep, to compare them with other species and to identify possible differences in the sheep immune response. Samples from bronchial lymph nodes from twelve Mbovis-naturally infected sheep were used. Four immunohistochemical protocols for the specific detection of T-lymphocytes, B-lymphocytes, plasma cells and macrophages were performed to study the local immune reaction within the granulomas.ResultsDifferences were observed in the predominant cell type present in each type of granuloma, as well as differences and similarities with the development of tuberculous granulomas in other species. Very low numbers of T-lymphocytes were observed in all granuloma types indicating that specific cellular immune response mediated by T-cells might not be of much importance in sheep in the early stages of infection, when macrophages are the predominant cell type within lesions. Plasma cells and mainly B lymphocytes increased considerably as the granuloma developed being attracted to the lesions in a shift towards a Th2 response against the increasing amounts of mycobacteria. Therefore, we have proposed that the granulomas could be defined as initial, developed and terminal.ConclusionsResults showed that the study of the lymphoid tissue granulomata reinforces the view that the three different types of granuloma represent stages of lesion progression and suggest an explanation to the higher resistance of sheep based on a higher effective innate immune response to control tuberculosis infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.