Graphene has attracted the attention of a growing number of scientists from several disciplines due to its remarkable physical properties and chemical functionalisation capabilities. This review presents an overview of graphene/polymer nanocomposites discussing preparation, properties and potential applications. The challenges and outlook of these emerging polymer nanocomposites are also discussed.
Electro-active polymers (EAP) are emerging as feasible materials to mimic muscle-like actuation. Among EAPs, dielectric elastomer (DE) devices are soft or flexible capacitors, composed of a thin elastomeric membrane sandwiched between two compliant electrodes, that are able to transduce electrical to mechanical energy, actuators, and vice versa, generators. Initial studies concentrated mainly on dielectric elastomer actuators (DEAs) and identified the electro-mechanical principles and material requirements for an optimal performance. Those requirements include the need for polymers with high dielectric permittivity and stretchability and low dielectric loss and viscoelastic damping. Hence, attaining elastomeric materials with those features is the focus of current research developments. This review provides a systematic overview of such research, highlighting the advances, challenges and future applications of DEAs.
In this article we report the successful manufacture of a novel functionalized graphene sheet (FGS)/ silicone porous nanocomposite. Both the cellular microstructure and the properties of the porous nanocomposite were investigated in detail. The thermal properties show great stability and heat dissipation efficiency, highlighting their potential in applications with intense thermal requirements. Additionally, compression measurements indicate that there was a favourable interaction between the graphene nanosheets and the polymer.
The evolution of self-healing polymers has resulted in a myriad of healing designs that have given way to complex systems capable of supporting multiple cycles, among other features. This progression...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.