Executive-attention theory proposes a close relationship between working memory capacity (WMC) and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively), while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4–8 Hz) and delta (1–3 Hz) connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.
Rhythmic visual stimuli (flicker) elicit rhythmic brain responses at the frequency of the stimulus, and attention generally enhances these oscillatory brain responses (steady state visual evoked potentials, SSVEPs). Although SSVEP responses have been tested for flicker frequencies up to 100 Hz [Herrmann, 2001], effects of attention on SSVEP amplitude have only been reported for lower frequencies (up to ~30 Hz), with no systematic comparison across a wide, finely sampled frequency range. Does attention modulate SSVEP amplitude at higher flicker frequencies (gamma band, 30-80 Hz), and is attentional modulation constant across frequencies? By isolating SSVEP responses from the broadband EEG signal using a multivariate spatiotemporal source separation method, we demonstrate that flicker in the alpha and gamma bands elicit strongest and maximally phase stable brain responses (resonance), on which the effect of attention is opposite: positive for gamma and negative for alpha. Finding subject-specific gamma resonance frequency and a positive attentional modulation of gamma-band SSVEPs points to the untapped potential of flicker as a non-invasive tool for studying the causal effects of interactions between visual gamma-band rhythmic stimuli and endogenous gamma oscillations on perception and attention..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.