Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B-cell function. However, there is limited information about the influence of obesity on B-cell function and underlying factors that modulate B-cell responses. Therefore, we studied B-cell cytokine secretion and/or antibody production across obesity models. In obese humans, B-cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B-cells. Furthermore, the high fat diet lowered bone marrow B-cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B-cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA3). DHA, an essential fatty acid with immunomodulatory properties, was tested since its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished antibody titers whereas the Western diet + DHA improved titers. Mechanistically, DHA did not directly target B-cells to elevate antibody levels. Instead, DHA increased the concentration of the downstream specialized pro-resolving lipid mediators (SPMs) 14-HDHA, 17-HDHA, and protectin DX. All three SPMs were found to be effective in elevating murine antibody levels upon influenza infection. Altogether, the results demonstrate that B-cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.
Obesity dysregulates B cell populations, which contributes toward poor immunological outcomes. We previously reported that differing B cell subsets are lowered in the bone marrow of obese male mice. Here, we focused on how lipid metabolites synthesized from docosahexaenoic acid (DHA) known as specialized pro‐resolving lipid mediators (SPMs) influence specific B cell populations in obese male mice. Metabololipidomics revealed that splenic SPM precursors 14‐hydroxydocosahexaenoic acid (14‐HDHA), 17‐hydroxydocosahexaenoic acid (17‐HDHA), and downstream protectin DX (PDX) were decreased in obese male C57BL/6J mice. Simultaneous administration of these mediators to obese mice rescued major decrements in bone marrow B cells, modest impairments in the spleen, and circulating IgG2c, which is pro‐inflammatory in obesity. In vitro studies with B cells, flow cytometry experiments with ALOX5−/− mice, and lipidomic analyses revealed the lowering of 14‐HDHA/17‐HDHA/PDX and dysregulation of B cell populations in obesity was driven indirectly via B cell extrinsic mechanisms. Notably, the lowering of lipid mediators was associated with an increase in the abundance of n‐6 polyunsaturated fatty acids, which have a high affinity for SPM‐generating enzymes. Subsequent experiments revealed female obese mice generally maintained the levels of SPM precursors, B cell subsets, and antibody levels. Finally, obese human females had increased circulating plasma cells accompanied by ex vivo B cell TNFα and IL‐10 secretion. Collectively, the data demonstrate that DHA‐derived mediators of the SPM pathway control the number of B cell subsets and pro‐inflammatory antibody levels in obese male but not female mice through a defect that is extrinsic to B cells.
The long-chain n-3 polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) in fish oil have immunomodulatory properties. B cells are a poorly studied target of EPA/DHA in humans. Therefore, in this pilot study, we tested how n-3 LC-PUFAs influence B-cell responses of obese humans. Obese men and women were assigned to consume four 1-g capsules per day of olive oil (OO, n=12), fish oil (FO, n=12) concentrate or high-DHA-FO concentrate (n=10) for 12 weeks in a parallel design. Relative to baseline, FO (n=9) lowered the percentage of circulating memory and plasma B cells, whereas the other supplements had no effect. There were no postintervention differences between the three supplements. Next, ex vivo B-cell cytokines were assayed after stimulation of Toll-like receptors (TLRs) and/or the B-cell receptor (BCR) to determine if the effects of n-3 LC-PUFAs were pathway-dependent. B-cell IL-10 and TNFα secretion was respectively increased with high DHA-FO (n=10), relative to baseline, with respective TLR9 and TLR9+BCR stimulation. OO (n=12) and FO (n=12) had no influence on B-cell cytokines compared to baseline, and there were no differences in postintervention cytokine levels between treatment groups. Finally, ex vivo antibody levels were assayed with FO (n=7) after TLR9+BCR stimulation. Compared to baseline, FO lowered IgM but not IgG levels accompanied by select modifications to the plasma lipidome. Altogether, the results suggest that n-3 LC-PUFAs could modulate B-cell activity in humans, which will require further testing in a larger cohort.
The results establish that 25 μmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.