Decentralized distributed clean-energy sources have become an essential need for smart grids to reduce the harmful effects of conventional power plants. Smart homes with a suitable sizing process and proper energy-management schemes can share in reducing the whole grid demand and even sell clean energy to the utility. Smart homes have been introduced recently as an alternative solution to classical power-system problems, such as the emissions of thermal plants and blackout hazards due to bulk plants/transmission outages. The appliances, sources and energy storage of smart homes should be coordinated with the requirements of homeowners via a suitable energy-management scheme. Energy-management systems are the main key to optimizing both home sources and the operation of loads to maximize home-economic benefits while keeping a comfortable lifestyle. The intermittent uncertain nature of smart homes may badly affect the whole grid performance. The prospective high penetration of smart homes on a smart power grid will introduce new, unusual scenarios in both generation and loading. In this paper, the main features and requirements of smart homes are defined. This review aims also to address recent proposed smart-home energy-management schemes. Moreover, smart-grid challenges with a high penetration of smart-home power are discussed.
There are wide applications of block-rate pricing schemes in many countries. However, there are no significant studies that apply this common tariff for smart home energy management systems. In this paper, a three-time-frame energy management scheme has been proposed for photovoltaic (PV)-powered grid-connected smart homes based on the well-known mixed-integer linear programming optimization technique. This paper provides three original and novel smart home energy management algorithms that depend on the most common residential tariff specifically in developing countries. Three different management concepts have been studied for a typical Egyptian house. The concepts of shifting load, vehicle-to-home and reducing air conditioning have been tested according to a commonly applied slab tariff. The proposed scheme considers the home battery extending lifetime constraints. It also preserves comfortable lifestyle limits for home users according to Arab housing climatic conditions and culture. Moreover, the economic feasibility of integrated PV modules for the studied home has been verified according to the Egyptian tariff. The proposed energy management scheme of PV-powered home reduces the electrical power bill significantly in a wide range from 61% to only 19% of the default case bill according to the applied management technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.