This work describes the enhancement of a novel antitumor therapeutic platform that combines advantages from small-molecule drug conjugates (SMDCs) and antibody drug conjugates (ADCs). Valine− citrulline (VCit) dipeptide linkers are commonly used cathepsin B cleavable linkers for ADCs. However, the instability of these linkers in mouse serum makes translating efficacy data from mouse to human more challenging. Replacing the VCit linker with glutamic acid−valine−citrulline (EVCit) has been reported to enhance the stability of ADCs in mouse serum. However, the effect of EVCit linker on the stability of SMDCs has not been reported. Here, we report that incorporating the EVCit linker in prostate-specific membrane antigen-targeting SMDCs, equipped with the transthyretin ligand AG10, resulted in conjugates with lower toxicity, an extended half-life, and superior therapeutic efficacy to docetaxel in a xenograft mouse model of prostate cancer. This should make SMDCs' preclinical toxicity and efficacy data from mice more reliable for predicting human results.
Several investigations into the sites of action of opioid analgesics have utilized peripherally acting mu-opioid receptor antagonists (PAMORAs), which have been incorrectly assumed to possess limited permeability across the blood-brain barrier. Unfortunately, the poor pharmacokinetic properties of current PAMORAs have resulted in misunderstandings of the role of central nervous system and gastrointestinal tract in precipitating side effects such as opioid-induced constipation. Here, we develop a drug delivery approach for restricting the passage of small molecules across the blood-brain barrier. This allows us to develop naloxone- and oxycodone-based conjugates that display superior potency, peripheral selectivity, pharmacokinetics, and efficacy in rats compared to other clinically used PAMORAs. These probes allow us to demonstrate that the mu-opioid receptors in the central nervous system have a fundamental role in precipitating opioid-induced constipation. Therefore, our conjugates have immediate use as pharmacological probes and potential therapeutic agents for treating constipation and other opioid-related side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.