Medical costs are one of the most common recurring expenses in a person’s life. Based on different research studies, BMI, ageing, smoking, and other factors are all related to greater personal medical care costs. The estimates of the expenditures of health care related to obesity are needed to help create cost-effective obesity prevention strategies. Obesity prevention at a young age is a top concern in global health, clinical practice, and public health. To avoid these restrictions, genetic variants are employed as instrumental variables in this research. Using statistics from public huge datasets, the impact of body mass index (BMI) on overall healthcare expenses is predicted. A multiview learning architecture can be used to leverage BMI information in records, including diagnostic texts, diagnostic IDs, and patient traits. A hierarchy perception structure was suggested to choose significant words, health checks, and diagnoses for training phase informative data representations, because various words, diagnoses, and previous health care have varying significance for expense calculation. In this system model, linear regression analysis, naive Bayes classifier, and random forest algorithms were compared using a business analytic method that applied statistical and machine-learning approaches. According to the results of our forecasting method, linear regression has the maximum accuracy of 97.89 percent in forecasting overall healthcare costs. In terms of financial statistics, our methodology provides a predictive method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.