Abstract. NoSQL databases have emerged as a backend to support Big Data applications. NoSQL databases are characterized by horizontal scalability, schema-free data models, and easy cloud deployment. To avoid overprovisioning, it is essential to be able to identify the correct number of nodes required for a specific system before deployment. This paper benchmarks and compares three of the most common NoSQL databases: Cassandra, MongoDB and HBase. We deploy them on the Amazon EC2 cloud platform using different types of virtual machines and cluster sizes to study the effect of different configurations. We then compare the behavior of these systems to high-level queueing network models. Our results show that the models are able to capture the main performance characteristics of the studied databases and form the basis for a capacity planning tool for service providers and service users.
Abstract-Virtual machine consolidation is attractive in cloud computing platforms for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. However, the interference between co-resident workloads caused by virtualization can violate the service level objectives (SLOs) that the cloud platform guarantees. Existing solutions to minimize interference between virtual machines (VMs) are mostly based on comprehensive micro-benchmarks or online training which makes them computationally intensive.In this paper, we present CloudScope, a system for diagnosing interference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time Markov Chain model for the online prediction of performance interference of co-resident VMs. It uses the results to optimally (re)assign VMs to physical machines and to optimize the hypervisor configuration, e.g. the CPU share it can use, for different workloads. We have implemented CloudScope on top of the Xen hypervisor and conducted experiments using a set of CPU, disk, and network intensive workloads and a real system (MapReduce). Our results show that CloudScope interference prediction achieves an average error of 9%. The interference-aware scheduler improves VM performance by up to 10% compared to the default scheduler. In addition, the hypervisor reconfiguration can improve network throughput by up to 30%.
As the computing industry enters the Cloud era, multicore architectures and virtualisation technologies are replacing traditional IT infrastructures. However, the complex relationship between applications and system resources in multicore virtualised environments is not well understood. Workloads such as web services and on-line financial applications have the requirement of high performance but benchmark analysis suggests that these applications do not optimally benefit from a higher number of cores.In this paper, we try to understand the scalability behaviour of network/CPU intensive applications running on multicore architectures. We begin by benchmarking the Petstore web application, noting the systematic imbalance that arises with respect to per-core workload. Having identified the reason for this phenomenon, we propose a queueing model which, when appropriately parametrised, reflects the trend in our benchmark results for up to 8 cores. Key to our approach is providing a fine-grained model which incorporates the idiosyncrasies of the operating system and the multiple CPU cores. Analysis of the model suggests a straightforward way to mitigate the observed bottleneck, which can be practically realised by the deployment of multiple virtual NICs within our VM. Next we make blind predictions to forecast performance with multiple virtual NICs. The validation results show that the model is able to predict the expected performance with relative errors ranging between 8 and 26%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.