Rift Valley Fever (RVF) is a mosquito-borne zoonosis, which may cause significant losses for the livestock sector and have serious public health implications. Egypt has been repeatedly affected by RVF epidemics, mainly associated to the importation of animals from sub-Saharan countries, where the disease is endemic. The objective of our study was the improvement of the surveillance and control strategies implemented in Egypt. In order to do that, first we evaluated the legal trade of live animals into and within Egypt. Then, we assessed the risk of Rift Valley Fever virus (RVFV) transmission within the country using a multi-criteria evaluation approach. Finally, we combined the animal trade and the risk of RVFV transmission data to identify those areas and periods in which the introduction of RVFV is more likely. Our results indicate that the main risk of RVFV introduction is posed by the continuous flow of large number of camels coming from Sudan. The risk of RVFV transmission by vectors is restricted to the areas surrounding the Nile river, and does not vary significantly throughout the year. Imported camels are taken to quarantines, where the risk of RVFV transmission by vectors is generally low. Then, they are taken to animal markets or slaughterhouses, many located in populated areas, where the risk of RVFV transmission to animals or humans is much higher. The measures currently implemented (quarantines, vaccination or testing) seem to have a limited effect in reducing the risk of RVFV introduction, and therefore other (risk-based) surveillance strategies are proposed.
Vibrio alginolyticus and Streptococcus agalactiae are important bacterial pathogens that yielded high losses in Nile tilapia in Egypt. The present study aimed to check the protective efficacy of inactivated whole-cell bivalent vaccines against these pathogens using incomplete Freund’s adjuvant and Montanide™ IMS 1312 VG as adjuvants. The antibody titers have been determined at different weeks post-vaccination (WPV). Moreover, the protection levels against the challenged bacterial pathogens have also been examined in relation to the time-dependent protection at different WPV. The results revealed that serum antibodies were generated in all immunized fish at 1st WPV, peaked at 4th WPV, continued, and gradually decreased from 6th WPV to 14th WPV in all vaccinated groups. In addition, vaccines induced significantly higher protection of the immunized tilapia, manifested by higher survival rates. We noticed that the antibody levels and survival rates of the vaccinated fish by a vaccine adjuvanted by Montanide™ IMS 1312 VG were higher than those produced by a vaccine adjuvanted by incomplete Freund’s adjuvant at different time points. Moreover, no external clinical signs, visceral adhesions, or internal lesions were recorded in the vaccinated tilapia, demonstrating the safety of the formulated vaccines. According to the aforementioned findings, we could suggest that the prepared bivalent vaccines, using the two adjuvant types, are safe and highly protective and could be utilized as promising candidate vaccines to increase the resistance of Nile tilapia against V. alginolyticus and S. agalactiae infections. Moreover, Montanide™ IMS 1312 VG enhanced the immuno-protectivity and exhibited optimum immune response and earlier protection compared to the vaccine adjuvanted by incomplete Freund’s adjuvant, demonstrating its added value during the preparation of tilapia vaccines.
A prevalent bacterial intestinal infection with severe economic damage is salmonellosis. Our study was carried out to diagnose Salmonella from chickens and calves, to determine its resistance to antimicrobials’ phenotypic and genotypic characterization of integrons and β lactamase genes in the multidrug resistance of different Salmonella serotypes, and to detect the genetic relationship between Salmonella isolates collected from different origins using an ERIC PCR. In total, 200 samples from diseased chicken and diarrheic calves were obtained from 50 various farms from Kafr El-sheikh, Egypt. Salmonella poultry isolates were characterized as S. Typhimurium (3/8), S. Enteritidis (3/8), and S. Kentucky (2/8), but Salmonella isolates from cattle were S. Enteritidis (1/2) and S. Kentucky (1/2). When antibiotic susceptibility testing was completed on all of the isolates, it showed that there was multidrug resistance present (MDR). A PCR was applied for identifying the accompanying class 1 integrons and ESBLs from MDR Salmonella isolates (two isolates of S. Kentucky were divided as one from calf and one from poultry). Our results detected blaTEM and class 1 integron, but were negative for bla IMP, bla VIM, and bla SHV. An ERIC PCR was conducted for understanding the clonal relation between various β-lactamase-producing MDR Salmonella isolates. The same four previously mentioned isolates were also tested. The two isolates of S. Enteritidis isolated from poultry and calves had 100% similarity despite indicating that there were interactions between broilers and calves living on the same farm that caused infection from the same Salmonella strains, while the other two isolates of S. Kentucky showed only 33% serovarities.
A total no. of 65 Salmonella enterica isolates recovered from food samples, feces of diarrheic calves, poultry, and hospital patient in large five cities at Northern West Egypt were obtained from the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. The 65 Salmonella enterica isolates had the invA gene were grouped into 11 Salmonella enterica serovars with dominance of S. Enteritidis and S. Kentucky serovars. Their resistance pattern were characterized by using 18 antibiotics from different classes. Approximately 80% of the isolates were multidrug resistant (MDR). Enterobacterial repetitive intergenic consequences polymerase chain reaction (ERIC-PCR) typing of 7 strains of S. Enteritidis showed 5 clusters with dissimilarity 25%. S. Enteritidis clusters in 2 main groups A and B. Group A have 2 human strain (HE2 and HE3) and one food origin (FE7) with a similarity 99%. Group B divided into B1 (FE2) and B2 (FE3) with a similarity ratio ≥ 93%, while ERIC-PCR analysis of 5 strains of S. Kentucky revealed 4 ERIC types, clustered in 2 main groups A and B with similarity 75%. We studied the effect of silver nanoparticles (Ag-NPs) on 10 antibiotic resistant strains of S. Enteritidis and S. Kentucky. The broth microdilution minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were detected. Evaluation of the affection using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed different ratios of Ag-NPs and microorganism as well as at different contact time ended finally with morphological alteration of the bacteria. We submitted new method in vivo to explore the activity of nanosilver in chicken. Key points • Importance of ERIC-PCR to determine the relatedness between Salmonella isolates. • Effect of silver nanoparticles to confront the antibacterial resistance. • Studying the effect of silver nanoparticles in vivo on infected chicken with Salmonella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.