High competition between universities has been increasing over the years, and stimulates higher education institutions to attain higher positions in the ranking list. Ranking is an important performance indicator of university status evaluation, and therefore plays an essential role in students’ university selection. The ranking of universities has been carried out using different techniques. Main goal of decision processes in real-life problems is to deal with the symmetry or asymmetry of different types of information. We consider that multi-criteria decision making (MCDM) is well applicable to symmetric information modelling. Analytic hierarchy process (AHP) is a well-known technique of MCDM discipline, and is based on pairwise comparisons of criteria/alternatives for alternatives’ evaluation. Unfortunately, the classical AHP method is unable to deal with imprecise, vague, and subjective information used for the decision making process in complex problems. So, introducing a more advanced tool for decision making under such circumstances is inevitable. In this paper, fuzzy analytic hierarchy process (FAHP) is applied for the comparison and ranking of performances of five UK universities, according to four criteria. The criteria used for the evaluation of universities’ performances are teaching, research, citations, and international outlook. It is proven that applying FAHP approach makes the system consistent, and by the calculation of coefficient of variation for all alternatives, it becomes possible to rank them in prioritized order.
Receiving appropriate forecast accuracy is important in many countries’ economic activities, and developing effective and precise time series model is critical issue in tourism demand forecasting. In this paper, fuzzy rule-based system model for hotel occupancy forecasting is developed by analyzing 40 months’ time series data and applying fuzzy c-means clustering algorithm. Based on the values of root mean square error and mean absolute percentage error which are metrics for measuring forecast accuracy, it is defined that the model with 7 clusters and 4 inputs is the optimal forecasting model for hotel occupancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.